Implementing a nitrogen-based model for autotrophic respiration using satellite and field observations

BHASKAR J. CHOUDHURY

Hydrological Sciences Branch, Code 974, Laboratory for Hydrospheric Processes, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract: The rate of carbon accumulation by terrestrial plant communities in a process-level, mechanistic modeling is the difference of the rate of gross photosynthesis by a canopy (A_g) and autotrophic respiration (R) of the stand. Observations for different biomes often show that R to be a large and variable fraction of A_g, ca. 35% to 75%, although other studies suggest the ratio of R and A_g to be less variable. Here, R has been calculated according to the two compartment model as being the sum of maintenance and growth components. The maintenance respiration of foliage and living fine roots for different biomes has been determined objectively from observed nitrogen content of these organs. The sapwood maintenance respiration is based on pipe theory, and checked against an independently derived equation considering sapwood biomass and its maintenance coefficient. The growth respiration has been calculated from the difference of A_g and maintenance respiration. The A_g is obtained as the product of biome-specific radiation use efficiency for gross photosynthesis under unstressed conditions and intercepted photosynthetically active radiation, and adjusted for stress. Calculations have been done using satellite and ground observations for 36 consecutive months (1987-1989) over large contiguous areas (ca. 10⁵ km²) of boreal forests, cropland, temperate deciduous forest, temperate grassland, tropical deciduous forest, tropical evergreen forest, tropical savanna, and tundra. The ratio of annual respiration and gross photosynthesis, (R/A_g), is found to be 0.5-0.6 for temperate and cold adopted biome areas, but somewhat higher for tropical biome areas (0.6-0.7). Interannual variation of the fluxes is found to be generally less than 15%. Calculated fluxes are compared with observations and several previous estimates. Results of sensitivity analysis are presented for uncertainties in parameterization and input data. It is found that uncertainty in determining maintenance respiration for tropical biomes is such that R/A_g for these biomes could be similar to that for temperate biomes.

Resumen: La tasa de acumulación de carbono en las comunidades de plantas terrestres en un modelo mecanístico a nivel de procesos, es igual a la diferencia entre la tasa de fotosíntesis bruta en un dosel (A_g) y la respiración autóctona (R) del rodal. Observaciones en diferentes biomas con frecuencia muestran que R es una fracción grande y variable A_g, ca. 35% al 75%, aunque otros estudios sugieren que el cociente de R y A_g es menos variable. Aquí, R fue calculada de acuerdo al modelo de dos compartimentos como la suma de los componentes mantenimiento y crecimiento. La respiración de mantenimiento del follaje y de las raíces vivas ha sido determinada objetivamente para diferentes biomas a partir del contenido de nitrógeno observado en estos órganos. La respiración de mantenimiento de la albura está basada en la teoría de tubos, y confrontada con una ecuación derivada independientemente que considera la biomasa de la albura y su coeficiente de mantenimiento. La respiración de crecimiento fue calculada como la diferencia de A_g y la respiración de mantenimiento. La A_g se obtiene como el producto de la eficiencia específica del bioma del uso de la radiación para la fotosíntesis bruta en condiciones no estresantes, por la radiación fotosintéticamente activa interceptada, y ajustada para el estrés. Para realizar los cálculos se usaron observaciones de satélite y las realizadas sobre el terreno durante 36 meses consecutivos (1987-1989) a través de grandes áreas contiguous (ca. 10⁵ km²) de
bosques boreales, tierras de labranza, bosques templados deciduos, pastizales templados, bosque tropical deciduo, bosque tropical perennifolio, sabana tropical y tundra. Se encontró que el ciciente de la respiración anual sobre la fotosíntesis bruta (R/Ag), tiene valores entre 0.5-0.6 en áreas de biomas templados y con adaptaciones al frío, pero algo más altas para áreas de biomas tropicales (0.6-0.7). Por lo general la variación interanual de los flujos es menor al 15%. Se comparan los flujos calculados con observaciones y varias estimaciones previas. Se presentan los resultados del análisis de sensi-bilidad para las incertidumbres en la parametrización y en los datos incorporados. Se encontró que la incertidumbre en la determinación de la respiración de manutimiento para biomas tropicales es tal que R/Ag para estos biomas podría ser similar a la de biomas templados.

Resumo: A taxa de acumulação de carbozo pela comunidade de plantas terrestres, ao nível de um processo de modelação mecanicista, é a diferença da taxa de fotossíntese bruta ao nível da copa (Ag) e a respiração autotrófica (R) da parcela. As observações para os diferentes biomas mostram muitas vezes que R é maior, e uma fração variável, do que Ag, atingindo valores que variam entre 35% a 75%, se bem que outros estudos sugiram que os ratios de R e Ag sejam menos variáveis. Aqui, R foi calculado de acordo com as duas componentes do modelo como sendo a soma da manutenção e do crescimento. A respiração de manutenção da folhagem e das raízes finas para os diferentes biomas foi determinada, objectivamente, a partir do teor de azoto destes orgãos. A respiração de manutenção do borne foi baseada na teoria dos tubos (pipe theory), e validada com recurso a uma equação independente derivada considerando a biomassa do borne e o seu coeficiente de manutenção. A respiração do crescimento foi calculada pela diferença entre Ag e a respiração de manutenção. A Ag foi obtida como o produto da eficiência de uso da radiação específica do bioma para a fotossíntese bruta sob condições de ausência de stresses, e a radiação fotossinteticamente activa interceptada, e ajustada para o stress. Os cálculos foram efectuados com recurso às observações de satélite e de solo durante 36 meses consecutivos (1987-1989) numa larga área contígua (ca. 10⁵ km²) de floresta boreal, campo de cultura, floresta temperada decidua, prado temperado, floresta decidua tropical, floresta tropical sempreverde, savana tropical e tundra. O ratio encontrado da respiração anual e da fotossíntese bruta, (R/Ag), foi de 0,5-0,6 para as áreas de bioma temperado e frío, se bem que um pouco mais alto para os biomas tropicais (0,6-0,7). Encontrou-se que a variação inter anual dos fluxos é geralmente menor do que 15%. Os fluxos calculados são comparados com observações e várias avaliações prêvias. Os resultados da análise de sensibilidade são apresentados para as incertezas na parametrização dos dados de entrada. Encontrou-se que a incerteza na determinação da respiração de manutenção para os biomas tropicais é tal que R/Ag, para estes biomas, pode ser semelhante à dos biomas temperados.

Key words: Boreal, fine roots, foliage, inter-annual variation, modeling, net primary productivity, nitrogen, photosynthesis, respiration, sapwood, satellite data, tropical, temperate, tundra.

Introduction

The rate of carbon accumulation by terrestrial plant communities is the difference of the rate of gross photosynthesis by a canopy (Ag) and autotrophic respiration (R, referred to below as respira-
tion). Observations for different biomes often show that R to be a large and variable fraction of Ag, ca. 35% to 75% (Kira 1975; Amthor 1989; Ryan et al. 1997; McKane et al. 1997; Waring & Running 1998; Law et al. 1999), while other studies suggest substantially less variation (McCree 1988; Gifford 1994; Malhi et al. 1999). The maximum rate of gross photosynthesis by leaves (Amax) and photosyntheticly active radiation intercepted by a canopy (IPAR) are major determinants of seasonal variation of Ag (Monteith 1977), and such variation of R is determined by Ag, biomass accumulation
per unit ground area by foliage, stem and roots, and their maintenance coefficients (Amthor 1989). Since these maintenance coefficients generally increase with tissue temperature (Amthor 1989), R has often been found to increase with temperature. Thus, considering that different biophysical factors exert important control on A_g and R, a better understanding of the effect of environmental or land use changes on carbon accumulation could be obtained by explicit evaluation of these two processes.

Lieth & Box (1977) produced a global map of long-term average annual gross photosynthesis by using a globally applicable empirical model which predicts net primary production of potential (i.e., undisturbed) vegetation from long-term average precipitation and air temperature, and a fitted relation between gross and net production developed from measurements for broad leaf forests at 17 locations. Using these empirical relations, Box (1978) calculated zonal variation of long-term average respiration (difference of gross and net production), which showed respiration to be 25% to 62% of annual gross production. Since these ground breaking studies providing spatially explicit global perspectives of gross photosynthesis and respiration, several bio-physically based models have been developed to calculate these processes at regional and global scales (for example, Raich et al. 1991; Warrant et al. 1994; Ruimy et al. 1996; Hunt et al. 1996). The difficulties in determining R and methods used for calibration have been elaborated by Ruimy et al. (1996).

Ruimy et al. (1996) have presented an approach for calculating A_g and R over the global land surface using satellite and ancillary data without calibrating the model parameters. The A_g was calculated as the product of radiation use efficiency and absorbed photosynthetically active radiation (IPAR). The radiation use efficiency was prescribed to be same for all biomes, while satellite observations were used to determine IPAR. The R was calculated as the sum of maintenance and growth respiration (R_m and R_g, respectively) according to the functional two component model of McCree (1974). The R_m was calculated from the “best guess” values of maintenance coefficient per unit dry matter of living foliage, sapwood and fine roots, and their dry biomass. They noted that maintenance coefficients for many types of vegetation are not available, and the available data show much variability. Thus, the selected values of the maintenance coefficients of foliage, sapwood and roots were stated to be “best guess”, and were assumed to be the same for all biomes. The root biomass was assumed to be equal to foliage biomass; the latter was determined as the product of a prescribed globally constant value of specific leaf weight and the leaf area index (L_o; m^2 projected leaf m^{-2} soil surface area). Spatial and temporal changes of L_o were derived from satellite observations. The sapwood biomass was estimated from stem and coarse root biomass, which was obtained as the difference of prescribed total biomass for potential vegetation and sum of the calculated seasonal maximum foliage and fine root biomass. The R_g was obtained as a constant fraction of the difference of A_g and R_m. Changes in A_g and R due to stresses were not considered. The calculated R/A_g for different biomes varied in the range 0.34 to 0.63. Equatorial rain forests were found to have lower net production compared to some areas of tropical savannas and northern temperate zones, which was not apparent in previous studies. In this context, Ruimy et al. noted that respiration in most previous studies was determined by calibration to match the production data or prescribed as an empirical fraction of gross photosynthesis. Substantial differences are also found for A_g. Box (1978) calculated gross production for the equatorial forest zone ($0o-10oS$) to be 4998 $g\,m^{-2}\,yr^{-1}$, while Ruimy et al. obtained 4409 $g\,m^{-2}\,yr^{-1}$ for tropical rainforest.

The objective of the present study is to reassess gross and net production using independently derived parameters without model calibration. The radiation use efficiency for unstressed conditions (RUE) has been calculated for each biome considering their A_{max}, foliage temperature and fractional diffuse radiation incident on the canopy, because changes in these factors have been shown to affect unstressed RUE (Monteith 1977; Sinclair & Muchow 1999; Choudhury 2001a,b). While maintenance coefficient per unit dry matter has been found to change during growth (McCree 1988; Bunce 1989) and show considerable variation within a canopy, among organs and species (Stockfor & Linder 1998; Ryan 1995; Brooks et al. 1991; Amthor 1989), this variation decreases when maintenance coefficient is expressed per unit nitrogen content because protein turnover is considered to be a major determinant of maintenance respiration (McCree 1983; Irving & Silsbury 1987; Ryan 1991; Reich et al. 1998). For example, field
observations for *Lolium perenne* by *Jones et al.* (1978) showed that while maintenance respiration of sward per unit dry matter varied by a factor of five during growth, 79% of the variance could be explained by the variation of protein concentration. Observations (n=16) and analysis presented by *Ryan* (1991) show that while maintenance respiration per unit dry matter for different species and organs varied by three orders of magnitude, 58% of the variance can be explained by the variation of the associated nitrogen concentration. Thus, in contrast to previous studies, maintenance respiration of different biome has been determined from nitrogen content rather than from dry matter. Also, biomass of living fine root has not been assumed to be equal to foliage biomass. Effects of diurnal and seasonal variations of temperature on maintenance respiration have been considered, together with varied stresses affecting *A* and *R*. Calculations have been done for 36 consecutive months (1987-1989) for large contiguous areas (ca. 105 km^2) of boreal deciduous and evergreen coniferous forests, crop land, temperate deciduous forest, temperate grassland, tropical deciduous forest, tropical evergreen forest, tropical savanna, and tundra. The model and input data are discussed below, followed by comparisons with observations, those predicted by *Lieth & Box*’s (1977) model, calculated by *Ruimy et al.* (1996) and several other estimates. Then, the results of sensitivity analysis are presented for uncertainties in parameterization and input data.

Model and parameters

Total respiration

Following the functional two component model of *McCree* (1974), the daily total respiration per unit ground area at a temperature of *T* [R (T), mol CO_2 m^-2 d^-1] has been calculated as the sum of growth (Rg) and maintenance (Rm) components (Amthor 1989):

\[R (T) = [R_g (T) + R_m (T)] \]

(1)

where, the growth respiration per unit ground area (Rg; mol CO_2 m^-2 d^-1) is given by the following equation (Amthor 1989):

\[R_g (T) = (1 – Y_g) \cdot [A_g - R_m (T)] \]

(2)

where Y_g is the growth conversion efficiency (mole C synthesized per mole input C; mol mol^-1) and A_g is actual daily total gross photosynthesis per unit ground area (mol CO_2 m^-2 d^-1).

Although the dependence of respiration on temperature is shown explicitly in the above equations, one should note that varied stresses which affect A_g also affect R (Eq. 2).

Growth conversion efficiency

Chemical composition of plants is the principal determinant of Y_g, and, apart from any biome-specific differences, changes in chemical composition during growth can also introduce variations in Y_g (Merino *et al.* 1982; Lafitte & Loomis 1988a; McCree 1988; Griffin 1994). It has been taken to be 0.74 for crops, and 0.69 for woody species (Table 1). The data in Table 1 do not include any value for natural grasslands. However, Baruch & Gomez (1996) have reported the construction cost (kg glucose required to produce unit kg of dry matter) determined by calorimetry for grassland species of a savanna during rainy and dry season. These data for construction cost would give the mean (n=24) and the coefficient of variation of Y_g as, respectively, 0.74 and 5%, if carbon content of dry matter is taken to be 40% (Dwivedi 1971; Hughes *et al.* 1999). Thus, Y_g for natural grasslands has been taken to 0.74. These Y_g values are close to those used in previous regional and global studies; viz., 0.80 by *Raich et al.* (1991), *Warnant et al.* (1994) and *Haxeltine & Prentice* (1996), 0.72 by *Ruimy et al.* (1996), 0.67 by *Hunt et al.* (1996), although these studies considered all biomes to have the same Y_g. The coefficient of variation of Y_g appears to be about 12% (Table 1), and the effect of this variation on the fluxes has been addressed by sensitivity analysis.

Actual gross photosynthesis

The method used to calculate unstressed gross photosynthesis (A_g, o) is based on the concept proposed by *Monteith* (1977) and has been fully described in *Choudhury* (2000a, 2001a,b). The A_g, o is obtained as the product of biome-specific values of RUE and IPAR, as briefly elaborated below.

The light response function for the rate of gross photosynthesis by leaves has been taken to be a non-rectangular hyperbola, in which the maximum rate of photosynthesis varies within a canopy as determined by the nitrogen content of leaves. The quantum efficiency varies with foliage temperature. The foliage is separated into sunlit and shaded fraction, and irradiance on these leaves has been determined from a solution of the
The instantaneous canopy gross photosynthesis is obtained by summing the photosynthesis by sunlit and shaded leaves, and the instantaneous values have been integrated over the daylight period to obtain \(A_{g,o} \). The RUE values for clear and overcast conditions are obtained as the ratio of \(A_{g,o} \) and IPAR. Then, the RUE corresponding to the incident PAR is obtained by interpolating the RUE values for clear and overcast conditions using the diffuse fraction of the incident PAR. These RUE values for different biomes and IPAR, determined from satellite observations providing incident irradiance and fractional interception, have been used to calculate \(A_{g,o} \).

Adjustment of gross photosynthesis due to stresses follows along previous studies (cf., McGuire et al. 1992; Hunt et al. 1996). The effect of soil water stress has been modeled by the following scalar multiplier to unstressed photosynthesis (Ritchie 1981):

\[
\sum g = \min \{1, W/(0.4 \ W_{\text{max}})\}
\]

where, \(W \) is the root-zone available moisture, and \(W_{\text{max}} \) is its maximum value. The effect of this stress is essentially that the unstressed gross photosynthesis continues until the available moisture decreases to 40% of its maximum value, below which photosynthesis decreases linearly with the available moisture. A biophysical process based model, combining water and energy balance equations with input satellite and ancillary data, has been used to calculate \(A_{g,o} \).

Maintenance respiration

Maintenance respiration per unit ground area of foliage, sapwood and living fine roots at mean daily temperature of \(T_j \) (subscript \(j \) denoting foli-
age, sapwood and living fine roots; f, s, r), \(R_{m,j}(T) \), has been calculated from their values at a reference temperature of 20°C (\(R_{m,j}(20) \); mol CO₂ m⁻²d⁻¹) and their temperature response function, \(f_j(T) \), as (Ryan 1991):

\[
R_{m,j}(T) = R_{m,j}(20) f_j(T) I_0 \left(\frac{\beta_j \Delta T_j}{2} \right) \quad (4a)
\]

where \(I_0(\alpha) \) is the modified Bessel function, \(\Delta T_j \) is the diurnal range of temperature (°C) for tissue \(j \), and \(\beta_j \) is related to the generally quoted temperature response coefficient (\(Q^{10} \)) of tissue \(j \), \((Q^{10}, j) \), as,

\[
\beta_j = \ln(\frac{Q^{10}, j}{10}) \quad (4b)
\]

Both \(f_j(T) \) and \(I_0(\alpha) \) are dimensionless quantities. The modified Bessel function accounts for the effect of diurnal variation of tissue temperature (taken to be sinusoidal) on respiration. Most previous regional and global studies have not considered this effect of diurnal variation, although ignoring this effect can underestimate respiration by 5% or more (Ryan 1991).

The temperature response function of tissue \(j \), \(f_j(T_j) \), is often expressed in terms of \(Q^{10} \) of that tissue \((Q^{10}, j) \) as:

\[
f_j(T_j) = [Q^{10}, j] \frac{(T_j - 20)}{10} \quad (5)
\]

Varied approaches have been used to prescribe \(Q^{10} \) in regional and global studies. For example, McGuire et al. (1992) considered \(Q^{10} \) to vary with monthly mean air temperature (\(Q^{10} \) increased linearly from 2.0 to 2.5 as temperature decreased from 5°C to 0°C, decreased linearly from 2.0 to 1.5 as temperature increased from 20°C to 40°C and was constant at 2.0 for temperature between 5°C and 20°C), while Hunt et al. (1996) considered \(Q^{10} \) to be 2.0 independent of temperature.

The value of \(Q^{10} \) is often observed to be about 2 in mid-temperature range (Amthor 1989), while it increases at lower temperature and decreases at higher temperature because of limiting biophysical processes (Ryan 1991; Criddle et al. 1994; Larcher 1995; Stockfors & Linder 1998; Atkin et al. 2000). Field measurements over a 12-year-old cypress forest (\(Chamaecyparis obtusa \)) for three-year period (Paembonan et al. 1991) gave the following relation between \(Q^{10} \) for shoot (\(j \)=foliage and stem) and air temperature (\(T_a \)) (Fig. 1):

\[
Q^{10,j} = 3.38 - 0.079 T_a \quad (6)
\]

with an explained variance (\(r^2 \)) of 0.91, and \(T \) was in the range 2.5°C to 25.0°C.

The \(f_j(T) \) derived from Eqs. (5) and (6) is shown in Fig. 2, where applicability of Eq. (6) has been assumed beyond the range of temperature data in Fig. 1. This figure also shows the linear
response function used by Ruimy et al. (1996), although they did not report the measurements used to determine this linear function and the range of temperature over which this response function is valid. These two response functions differ by more than 10% below 16°C and above 28°C. For regional and global modeling, Raich et al. (1991), McGuire et al. (1992), Warnant et al. (1994) and Ruimy et al. (1996) did not distinguish temperature of foliage, sapwood and roots (which were taken to be equal to the monthly mean air temperature), while Hunt et al. (1996) distinguished the temperature of shoot and roots. Thus, baseline calculations have been done using Eqs. (5) and (6) (i.e., the non-linear function in Fig. 2), while the effect of changing the response function to be linear (as in Ruimy et al.) on the fluxes has been addressed by sensitivity analysis. Also addressed by sensitivity analysis is the effect of distinguishing the temperature of different tissues.

It is generally recognized that much of the maintenance cost is due to turnover of protein in live plant tissue (Amthor 1989). A synthesis of observations relating maintenance respiration to nitrogen content for crops and uncultivated species from temperate and Mediterranean climate gave (Ryan 1991; Choudhury 2000 c):

\[R_m(20) = 0.21 \left(N_f + N_s + 2 N_r \right) \]

(7a)

where, \(N_f, N_s \) and \(N_r \) are nitrogen content per unit ground area (mol N m\(^{-2}\)) of foliage, sapwood and living fine roots. The first, second and third term on the right hand side of Eq. (7a) are, respectively, the respiration of foliage, sapwood and roots, \(R_m,f, R_m,s \) and \(R_m,r \). Higher respiration observed for roots, as compared to shoots, is thought to be due to the additional cost of ion uptake (Amthor 1989).

Ryan (1995) observed that maintenance respiration per unit nitrogen content for leaves of sub-alpine and boreal trees and shrubs is 1.8 times higher than that for temperate species, which was suggested by Ryan (1995) to be in response to adaptation to colder climate. Thus, the equation used for boreal and tundra vegetation is the following:

\[R_m(20) = 0.38 \left(N_f + N_s + 2 N_r \right) \]

(7b)

Measurements used in developing Eqs. (7a) and (7b) did not include any data for tropical biomes. If, at the reference temperature of 20°C, \(R_m \) per unit nitrogen content of boreal species is higher as compared to temperate species in response to adaptation to colder climate (Ryan 1995), one may hypothesize that \(R_m \) per unit nitrogen content of tropical species at that reference temperature could be lower as compared to that for temperate species in response to adaptation to warmer climate. The impact of decreasing the numerical coefficient in Eq. (7a) for tropical biomes due to possible adaptation to growing at higher temperature has been addressed by sensitivity analysis.

Estimation of \(R_m(20) \) for different biomes is presented below.

From harvests of fertilized stands of *Zea mays* at different times during the period from emergence to one week before silking, Plenet & Lemaire (1999) found the following linear relation (\(r^2=0.98, n=23 \)) between nitrogen content of shoot per unit ground area (i.e, \(N_f + N_s \)) and projected leaf area index (L\(_o \); m\(^2\) leaf m\(^{-2}\) soil surface area), up to the observed maximum L\(_o \) of 6:

\[N_f + N_s = 0.206 L_o \]

(8a)

while the relation for plants growing under limiting nitrogen conditions and L\(_o \) greater than 1.5 was,

\[N_f + N_s = 0.145 + 0.073 L_o \]

(8b)

Fig. 3 shows Eq. (8), together with total res-
spiring nitrogen content appearing in Eq. (7a) (i.e., $N_f + N_s + 2 N_r$) and L_0 determined from harvest data during the vegetative phase of fertilized stands of *Triticum aestivum* (Choudhury 2000c), *Sorghum bicolor* (Szeicz et al. 1973; Sivakumar et al. 1979; Eck & Music 1979; Myers 1980; Lafitte & Loomis 1988b), *Glycine max* (Hanway & Weber 1971a; Rochette et al. 1995), *Gossypium hirsutum* (Bassett et al. 1970; Helevy 1976; Mauney et al. 1994; Pettigrew 1999), and *Phaseolus vulgaris* (Peck & MacDonald 1984; Lynch et al. 1992). A constrained linear least square regression analysis gave the following relation ($r^2=0.86$, n=58):

$$N_f + N_s + 2 N_r = 0.226 L_0$$ \((9)\)

A practical constraint for annual crops is that $(N_f + N_s + 2 N_r)$ be zero when L_0 is zero. Observations and analysis presented by Plenet & Lemaire (1999) and in Fig. 3 suggest that L_0 can be considered to be an indicator of nitrogen content of a stand of some agricultural crops. Billore (1973) (quoted in Singh & Joshi 1979) had found a linear relation between L_0 and chlorophyll content for a grassland community, although both linear and non-linear relations between L_0 and chlorophyll content have been noted depending upon the degree of shading and structural, non-photosynthetic tissue (Singh & Joshi 1979). It is assumed in this study that L_0 can provide an indicator of the nitrogen content of the stand.

An equation for estimating $R_{m}(20)$ of cultivated areas can be obtained by substituting Eq. (9) in Eq. (7a) as:

$$R_{m}(20) = 0.047 L_0$$ \((10)\)

Assuming that $(N_f + N_s + 2 N_r)$ scales with L_0 of temperate grasslands as (Appendix A):

$$N_f + N_s + 2 N_r = 1.395 L_0$$ \((11)\)

one can obtain the following relation for $R_{m}(20)$ of temperate grasslands (substituting Eq. 11 in Eq. 7a):

$$R_{m}(20) = 0.293 L_0$$ \((12)\)

The equation for $R_{m}(20)$ of tropical grasslands is found to be (Appendix B):

$$R_{m}(20) = 0.189 L_0$$ \((13)\)

Attempt to apply Eq. (7) in totality to woody vegetation was not very successful because of very limited data for sapwood nitrogen content per unit ground area for different biomes needed to determine stem maintenance respiration. Following Hunt et al. (1996), the concept of pipe model was considered to estimate stem maintenance respiration. From available data on above ground standing biomass and an estimate of this biomass con-

Table 2. A compilation of maximum projected leaf area index (L_0, max) and stem maintenance respiration per unit ground area of woody species under the prevailing soil water conditions ($R_{m,s}$ mol CO$_2$ m$^{-2}$d$^{-1}$) at 20°C using the reported Q10 values and available meteorologic data, together with their sources. Species with asterisk are needle leaf, while others are broad leaf species. The carbon content of dry matter has been taken to be 48% when it was not given.

<table>
<thead>
<tr>
<th>Species</th>
<th>L_0, max</th>
<th>$R_{m,s}$</th>
<th>$R_{m,s}/L_0, \text{max}$</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctostaphylos glauca</td>
<td>3.0</td>
<td>0.072</td>
<td>0.024</td>
<td>1</td>
</tr>
<tr>
<td>Adenostoma fasciculatum</td>
<td>1.2</td>
<td>0.015</td>
<td>0.013</td>
<td>1</td>
</tr>
<tr>
<td>Ceanothus greggii</td>
<td>1.6</td>
<td>0.034</td>
<td>0.021</td>
<td>1</td>
</tr>
<tr>
<td>Rhus ovata</td>
<td>2.2</td>
<td>0.012</td>
<td>0.006</td>
<td>1</td>
</tr>
<tr>
<td>Colliguaya odorifera</td>
<td>2.3</td>
<td>0.058</td>
<td>0.025</td>
<td>1</td>
</tr>
<tr>
<td>Lithraea caustica</td>
<td>3.2</td>
<td>0.009</td>
<td>0.003</td>
<td>1</td>
</tr>
<tr>
<td>Satureja gilliesii</td>
<td>3.6</td>
<td>0.027</td>
<td>0.007</td>
<td>1</td>
</tr>
<tr>
<td>Trevoa trinervis</td>
<td>2.3</td>
<td>0.025</td>
<td>0.011</td>
<td>1</td>
</tr>
<tr>
<td>Populus tremuloides</td>
<td>2.2</td>
<td>0.041</td>
<td>0.019</td>
<td>2</td>
</tr>
<tr>
<td>Populus tremuloides</td>
<td>3.3</td>
<td>0.058</td>
<td>0.018</td>
<td>2</td>
</tr>
<tr>
<td>Pinus banksiana* (old)</td>
<td>2.2</td>
<td>0.016</td>
<td>0.007</td>
<td>2</td>
</tr>
<tr>
<td>Pinus banksiana* (old)</td>
<td>1.3</td>
<td>0.015</td>
<td>0.012</td>
<td>2</td>
</tr>
<tr>
<td>Pinus banksiana* (young)</td>
<td>1.8</td>
<td>0.016</td>
<td>0.009</td>
<td>2</td>
</tr>
<tr>
<td>Pinus banksiana* (young)</td>
<td>2.8</td>
<td>0.026</td>
<td>0.009</td>
<td>2</td>
</tr>
<tr>
<td>Picea mariana*</td>
<td>4.9</td>
<td>0.071</td>
<td>0.014</td>
<td>2</td>
</tr>
<tr>
<td>Picea mariana*</td>
<td>5.6</td>
<td>0.038</td>
<td>0.007</td>
<td>2</td>
</tr>
<tr>
<td>Acer, Quercus</td>
<td>5.0</td>
<td>0.026</td>
<td>0.005</td>
<td>3</td>
</tr>
<tr>
<td>Pinus resinosa*</td>
<td>6.2</td>
<td>0.029</td>
<td>0.005</td>
<td>4</td>
</tr>
<tr>
<td>Pinus ponderosa*</td>
<td>2.7</td>
<td>0.022</td>
<td>0.008</td>
<td>4</td>
</tr>
<tr>
<td>Pinus elliottii*</td>
<td>2.2</td>
<td>0.027</td>
<td>0.012</td>
<td>4</td>
</tr>
<tr>
<td>Tsuga heterophylla*</td>
<td>8.7</td>
<td>0.054</td>
<td>0.006</td>
<td>4</td>
</tr>
<tr>
<td>Floresta ombrofila</td>
<td>4.0</td>
<td>0.047</td>
<td>0.012</td>
<td>5</td>
</tr>
</tbody>
</table>

Summary statistics:

<table>
<thead>
<tr>
<th>Needle leaf (n=10)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.8</td>
<td>0.032</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Coeff. of variation (%)</td>
<td>63</td>
<td>58</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Broad leaf (n=12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.7</td>
<td>0.034</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Coeff. of variation (%)</td>
<td>39</td>
<td>60</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>All (n=22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.3</td>
<td>0.034</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Coeff. of variation (%)</td>
<td>55</td>
<td>57</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

Sources: 1 (Oechel & Lawrence 1981; Rundel 1981; Mooney & Miller 1985); 2 (Ryan et al. 1997); 3 (Edwards & Hanson 1996); 4 (Ryan et al. 1995); 5 (Lloyd et al. 1995; Haxeltine & Prentice 1996).
stituting sapwood, Haxeltine & Prentice (1996) proposed the following equation for sapwood maintenance respiration in terms of the seasonal maximum L_o (L_o,max):

$$R_{m,s}(20) = 0.011 L_{o,\text{max}} \quad (14a)$$

Based on a synthesis of data relating sapwood maintenance respiration to leaf area index (Table 2), we have used the following relations for sapwood maintenance respiration of trees and shrubs based on the foliage shape:

- Needle leaf: $R_{m,s}(20) = 0.009 L_{o,\text{max}} \quad (14b)$
- Broad leaf: $R_{m,s}(20) = 0.014 L_{o,\text{max}} \quad (14c)$

Waring & Schlesinger (1985) have tabulated percentage of living cells in sapwood for eight species each of conifer and broad leaf trees, which gives mean (standard deviation, $n=8$) of live cells as, respectively, 7.1 (1.4)% and 16.0 (7.2)%. For the same sapwood volume, the cost of maintaining a lower percentage of live cells would be expected to be lower (Eqs. 14b,c).

Note that Eq. (14a), derived independently considering sapwood biomass and its maintenance coefficient, is consistent with the data in Table 2 when needle leaf and broad leaf species are not separated. Haxeltine & Prentice (1996) did not discuss the uncertainty associated with Eq. (14a) due to variability in the maintenance coefficient and uncertainty in determining the sapwood biomass. The impact of this uncertainty on the fluxes has been assessed by sensitivity analysis.

Then, maintenance respiration at 20°C of foliage and living fine roots is calculated from Eq. (7a) as:

$$R_{m,f} + R_{m,r} = 0.21 (N_f + 2 N_r) \quad (15a)$$

for all biomes, except for boreal forests and tundra, for which the following equation is used (Eq. 7b):

$$R_{m,f} + R_{m,r} = 0.38 (N_f + 2 N_r) \quad (15b)$$

Maintenance respiration of foliage and living fine root per unit L_o can be expressed as:

$$R_{m,f} + R_{m,r} = (\phi_f + \phi_r) L_o \quad (16)$$

where $\phi_f = 0.21 N_f/L_o$ or $0.38 N_f/L_o$, and $\phi_r = 0.42 N_r/L_o$ or $0.76 N_r/L_o$. ϕ_f and ϕ_r determined from field observations for different biomes are given in Table 3, and elaborated in Appendix C.

From “best guess” values of the maintenance coefficients for foliage and fine roots, and assuming that fine root biomass to be equal to foliage biomass, Ruimy et al. (1996) had developed the following equation for calculating $R_{m,f} + R_{m,r}$ at 20°C for all biomes:

$$R_{m,f} + R_{m,r} = 0.047 L_o \quad (17)$$

<table>
<thead>
<tr>
<th>Biome</th>
<th>L_o</th>
<th>N_f (N)</th>
<th>N_r</th>
<th>ϕ_f</th>
<th>ϕ_r</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boreal deciduous forests</td>
<td>1.5</td>
<td>0.231 (0.154)</td>
<td>0.246</td>
<td>0.0585</td>
<td>0.1246</td>
<td>1</td>
</tr>
<tr>
<td>Boreal evergreen forests</td>
<td>4.0</td>
<td>0.520 (0.130)</td>
<td>0.182</td>
<td>0.0494</td>
<td>0.0346</td>
<td>2</td>
</tr>
<tr>
<td>Desert shrubs</td>
<td>0.9</td>
<td>0.223 (0.248)</td>
<td>0.103</td>
<td>0.0520</td>
<td>0.0481</td>
<td>3</td>
</tr>
<tr>
<td>Sclerophyllous shrubs</td>
<td>2.1</td>
<td>0.328 (0.156)</td>
<td>0.222</td>
<td>0.0328</td>
<td>0.0444</td>
<td>4</td>
</tr>
<tr>
<td>Temperate coniferous forests</td>
<td>4.7</td>
<td>0.831 (0.178)</td>
<td>0.396</td>
<td>0.0374</td>
<td>0.0362</td>
<td>5</td>
</tr>
<tr>
<td>Temperate deciduous forests</td>
<td>5.2</td>
<td>0.558 (0.107)</td>
<td>0.349</td>
<td>0.0225</td>
<td>0.0282</td>
<td>6</td>
</tr>
<tr>
<td>Tropical deciduous forests</td>
<td>3.8</td>
<td>0.678 (0.178)</td>
<td>0.222</td>
<td>0.0375</td>
<td>0.0245</td>
<td>7</td>
</tr>
<tr>
<td>Tropical evergreen forests</td>
<td>5.1</td>
<td>0.769 (0.151)</td>
<td>0.262</td>
<td>0.0317</td>
<td>0.0216</td>
<td>8</td>
</tr>
<tr>
<td>Tundra</td>
<td>1.0</td>
<td>0.174 (0.174)</td>
<td>0.270</td>
<td>0.0661</td>
<td>0.2052</td>
<td>9</td>
</tr>
</tbody>
</table>

and Table 3) agree reasonably well (within 10%) with Eq. (17) for tropical evergreen forests and temperate deciduous forests, but not for other biomes. Eq. (10) derived for crops (including stem) is also in good agreement with Eq. (17), although Ruimy et al. (1996) did not consider crops to be a separate biome (their calculations are for potential vegetation). The present calculations are based on field data for fine root biomass, instead of the assumption that fine root biomass being equal to foliage biomass.

Net carbon accumulation

Net carbon accumulation per unit ground area per day (C; mol m\(^{-2}\) d\(^{-1}\)) has been calculated as the difference of gross photosynthesis (\(A_g\)) and respiration (\(R\)):

\[
C = A_g - R
\]
(18)

By inserting Eqs. (1) and (2) in Eq. (18), one can also write \(C\) as:

\[
C = Y_G (A_g - R_m)
\]
(19)

Note that, while IPAR is a major determinant of \(A_g\), \(R_m\) is independent of IPAR. A radiation use efficiency corresponding to \(C\) (defined as the ratio of \(C\) and IPAR) would be conservative under conditions when respiration varies in proportion to photosynthesis (Choudhury 2001 b). Attempt to determine \(C\) without explicit calculation of \(A_g\) and \(R\) would require that \(C\) be parameterized in a way which can account for different sensitivities of \(A_g\) and \(R\) to biophysical factors.

Input data and methods

Calculations have been done at a spatial resolution of 0.25\(\times\)0.25\(^\circ\) (latitude \(\times\) longitude cell dimension) for 36 consecutive months (1987-1989) using spatially representative, geo-referenced data derived from satellite and surface observations (Choudhury & DiGirolamo 1998; Choudhury 2001a). The leaf area index (\(L_o\)) has been determined following the algorithm of Los et al. (2000) using monthly maximum composite of visible and near infrared observations by the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA satellites after correcting the reflectances for the atmospheric effects (Rayleigh and aerosol scattering, and absorption by ozone, mixed gases and water vapor) and sensor degradation (Choudhury & DiGirolamo 1998). The algorithm for \(L_o\) was derived and tested against field data (Los et al. 2000). Observations by the Tiros Operational Vertical Sounder (TOVS) on board the NOAA satellites have been used to determine air temperature (Choudhury & DiGirolamo 1998). Comparison with surface observations for 12 months period (year 1988) at globally distributed 134 stations, which were selected to be away from large water bodies (viz., major lakes and oceans) and mountainous areas, gave the RMS error of 2.9\(^{\circ}\)C and explained variance of 96\% (the range of temperature was \(-40^{\circ}\)C to \(40^{\circ}\)C). The diurnal temperature range needed for calculating maintenance respiration (Eq. 4a) is based upon climatologic data (Muller 1982).

The input data used for calculating gross photosynthesis (\(A_{g,o}\) and \(\Sigma_g\)) are fully described in Choudhury (2001a) and Choudhury & DiGirolamo (1998), which include the maximum rate of photosynthesis by leaves, incident photosynthetically active radiation, air temperature, precipitation, vapor pressure deficit of air, fractional cloud cover, surface albedo, and friction velocity. A large part of these data are needed for solving water and energy balance equations, which provide root-zone soil moisture needed for determining \(\Sigma_g\) (Eq. 3). The maximum rate of photosynthesis by leaves has been determined from compilations given in Medina (1986), Korner (1994), Vygodskaya et al. (1997), among others.

Calculations have been done for three consecutive years (1987-1989) for large contiguous areas (ca. 10\(^5\) km\(^2\)) of boreal deciduous coniferous forest (BDF), boreal evergreen coniferous forest (BEF), crop land (CL), temperate deciduous forest (TDF), temperate grassland (TG), tropical deciduous forest (TrDF), tropical evergreen forest (TEF), tropical savanna (TS), and tundra (T), based on consulting vegetation maps of Olson & Watts (1983), Matthews (1983) and Haxeltine & Prentice (1996) (Table 4). The vegetation types for these areas, according to the land cover data of Matthews (1983) following the UNESCO classification system, are given in Table 4. These are: cold-deciduous forest, without evergreens (Type #11 in Matthews; UNESCO code, 1.B.3) for BDF area; temperate/sub-polar evergreen needle-leaf forest (Type #8; code 1.A.10) for BEF area; cultivation (Type #32) on nearly 100\% of the area for the CL area; cold-deciduous forest, with evergreens (Type #10; code 1.B.2) for the TG area; meadow, short grassland, no woody cover (Type #28; code 5.C.5, 5.C.6, 5.C.7) for the TG area; tropical/sub-tropical
drought deciduous forest (Type #9; code 1.B.1) for the TrDF area; tropical evergreen rainforest, mangrove forest (Type #1; code 1.A.1, 1.A.5) for the TEF area; tall/medium/short grassland with 10-40% area woody tree cover (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).

The maintenance respiration of each biome has been calculated from the biome specific equations given in the previous section (e.g., Eq. 10 for CL, Eq. 12 for TG, etc.). For the tropical savanna (TS) area, a fractional area weighted sum of tropical deciduous forest (Type #23; code 5.A.1, 5.B.1, 5.C.1) for the TS area; arctic/alpine tundra, mossy bog (Type #22; code 4.D, 4.E, 5.C.8) for the T area. Annual total precipitation and mean air temperature for the three years over the study areas are given in Table 4, together with long-term average data at selected locations for reference (Wernstedt 1972; Muller 1982).
ratio (NPP/GPP) to decrease monotonically or (R/GPP) to increase monotonically with increasing NPP (the implication being that the ecosystem or the location which has higher NPP will also have higher R/GPP).

The P and T values for the three years given in Table 4 have been averaged for calculating NPP and GPP. Since the present calculations give the fluxes in carbon rather than dry matter equivalent, it was necessary to prescribe the carbon content of dry matter to compare with the results derived from LB’s model. Thus, the carbon content of dry matter has been taken to be 40% for grasslands (Dwivedi 1971; Hughes et al. 1999), 45% for savanna (Ajtay et al. 1979), and 48% for all other biomes (Raich et al. 1991) to convert NPP and GPP to, respectively, C and A. This conversion of the fluxes introduces an uncertainty of 5-10% because of variability of the carbon content (Singh & Singh 1991). Then, R has been calculated as the difference of As and C. Note that the ratio of the fluxes (R/As) is not affected by the choice of carbon content of dry matter.

Results and discussion

Model results

Temporal variations of actual gross photosynthesis, total respiration and the ratio of maintenance respiration and total respiration are shown in Figs. (4a) for crop land (CL), (4b) for temperate grassland (TG), and Fig. (4c) for tropical evergreen forest (TEF) areas. Because of differences in the seasonality of leaf area index, incident radiation,
temperature and soil moisture, which are the major driving forces for photosynthesis and respiration, the temporal variations of the fluxes are significantly more pronounced for CL and TG areas as compared to TEF area.

The seasonal maximum photosynthesis (total respiration) for the CL area is calculated to be 23 (12), 16 (9), and 23 (11) mol m\(^{-2}\) mo\(^{-1}\) for respectively, 1987, 1988, and 1989 (Fig. 4a). Precipitation during 1988 was about 150 mm lower than that during 1987 and 1989 (Table 4), and thus affecting the fluxes. For example, it is seen in Fig. 4a that during 1987 both photosynthesis and respiration reach their maximum during June, then they decrease during July, followed by increase in August, and then progressive decrease. This temporal pattern for the fluxes match the temporal variation of the soil water stress factor (Fig. 5). The ratio of maintenance respiration and total respiration attains its maximum during July in 1987 (Fig. 4a), when leaf area index (L\(\text{a}\)) reaches its maximum (Fig. 5). Respiration exceeds photosynthesis during July 1988 (Fig. 4a).

The seasonal maximum photosynthesis for the TG area is calculated to be 14, 18, and 18 mol m\(^{-2}\) mo\(^{-1}\) for respectively, 1987, 1988, and 1989 (Fig. 4b). The seasonal maximum L\(\text{a}\) was found to be 0.9 in 1988, but somewhat lower in 1987 and 1989 (L\(\text{a}\) = 0.7). The annual total precipitation for the TG area was maximum in 1989, followed by 1987 and 1988 (Table 4). Temporal variation of precipitation is shown in Fig. 6. Precipitation during the initial growing period (May-June) was 73, 68, and 84 mm for 1987, 1988 and 1989. Thus, while L\(\text{a}\) was lower in 1989, the available water was higher. Both L\(\text{a}\) and soil water stress are contributing to the interannual variation of gross photosynthesis. The seasonal maximum total respiration is calculated to be 9, 12, and 11 mol m\(^{-2}\) mo\(^{-1}\) for respectively, 1987, 1988, and 1989, and, of this total, maintenance respiration contributed, respectively, 83, 79, and 69%. These seasonal maximum values of respiration and photosynthesis temporally coincide for 1988 and 1989, but are offset by one month in 1987. With the onset of the growing season, the fraction of total respiration due to maintenance increases because of vegetation growth, but then the fraction decreases because of senescence. It is seen in Fig. 4b that photosynthesis increases from zero to the seasonal maximum in two months, but then it decreases to zero in three months during all three years. Such temporal variation is also seen for total respiration during 1988 and 1989, but not during 1987.

The seasonal maximum gross photosynthesis for the TEF area is calculated to be about 25 mol m\(^{-2}\) mo\(^{-1}\), while the seasonal minimum photosynthesis is found to be 16 mol m\(^{-2}\) mo\(^{-1}\) (Fig. 4c). The

Fig. 5. Temporal variations of leaf area index for the crop land area during 1987, and the calculated actual gross photosynthesis, and soil water stress factor.

Fig. 6. Monthly total precipitation (mm) and daily mean air temperature (°C) for the temperate grassland area for the three years.
seasonal maximum total respiration is found to be about 15 mol m\(^{-2}\) mo\(^{-1}\), while the seasonal minimum to be about 12 mol m\(^{-2}\) mo\(^{-1}\). Thus, the seasonal range of photosynthesis and total respiration are, respectively, about 9 and 3 mol m\(^{-2}\) mo\(^{-1}\). The maintenance respiration is found to contribute about 80% of the total respiration.

Calculated annual fluxes of gross photosynthesis, maintenance and growth respiration, and net carbon accumulation are given in Table 5 for all three years. It is seen that maintenance respiration exceeds growth respiration for all biomes. Averaged for the three years, the ratio of annual maintenance respiration and annual total respiration is found to be highest for TEF (0.81), followed by TS (0.75), TrDF (0.72), TG (0.71), CL (0.71), BDF (0.66), TDF (0.65), BEF (0.61), and T (0.58). Ryan (1991) has summarized the ratio of maintenance and total respiration for two stands each of temperate grasslands and temperate forests, giving the range as 0.75-0.88. The ratio of annual total respiration and gross photosynthesis is found to be highest for TEF (0.70), followed by TS (0.63), TG and TrDF (0.62), BDF (0.57), TDF (0.56), CL (0.55), BEF (0.54), and T (0.52). Interannual variation of the fluxes is generally within 15%, except for the CL area for which C during 1988 is about 62% lower than the other two years. During 1989, the C for the BDF area is about two times that for other two years, and the C for the TS area is about 32% higher than the other two years. The C for the T area differs significantly for each of the three years due primarily to differences in \(A_g\) and \(R_g\) caused by soil water stress; June-September precipitation for 1987, 1988 and 1989 were, respectively, 92, 76, and 142 mm.

Comparison with observations and previous estimates

The present results (averaged for the three years) are given in Table 6, together with those predicted by Lieth & Box's (1977) model (Eq. 21; referred to below as LB's model) and calculated by Ruimy et al. (1996). This table also includes the data presented by Ajtay et al. (1979) based on approximate averages of measurements at different sites within a biome or chosen subjectively as possible values.

The calculated C for the BDF area is 30% lower than the value given by Ajtay et al. for open boreal coniferous forest, but it is 42% higher than that predicted by LB's model, and less than half the value calculated by Ruimy et al. (1996) (Table 5. Calculated annual total gross photosynthesis \(A_g\), maintenance \(R_{m}\) and growth \(R_g\) respiration of a stand, and net carbon accumulation \(C\) per unit ground area (mol C m\(^{-2}\) yr\(^{-1}\)), and the ratio of total respiration \(R\) and gross photosynthesis \(R/A_g\). The biome areas are given in Table 4. The biome names have been abbreviated below as: BDF for Boreal Deciduous (coniferous) Forest, BEF for Boreal Evergreen (coniferous) Forest, CL for Crop Land, TDF for Temperate Deciduous Forest, TG for Temperate Grassland, TrDF for Tropical Deciduous Forest, TEF for Tropical Evergreen forest, TS for Tropical Savanna, and T for tundra. All fluxes have been rounded to integers.

<table>
<thead>
<tr>
<th>Biome</th>
<th>Year</th>
<th>(A_g)</th>
<th>(R_{m})</th>
<th>(R_g)</th>
<th>(C)</th>
<th>(R/A_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>1987</td>
<td>30</td>
<td>15</td>
<td>5</td>
<td>11</td>
<td>0.65</td>
</tr>
<tr>
<td>BDF</td>
<td>1988</td>
<td>38</td>
<td>17</td>
<td>7</td>
<td>15</td>
<td>0.62</td>
</tr>
<tr>
<td>BDF</td>
<td>1989</td>
<td>52</td>
<td>13</td>
<td>12</td>
<td>26</td>
<td>0.49</td>
</tr>
<tr>
<td>BEF</td>
<td>1987</td>
<td>75</td>
<td>23</td>
<td>16</td>
<td>36</td>
<td>0.52</td>
</tr>
<tr>
<td>BEF</td>
<td>1988</td>
<td>81</td>
<td>29</td>
<td>16</td>
<td>36</td>
<td>0.56</td>
</tr>
<tr>
<td>BEF</td>
<td>1989</td>
<td>71</td>
<td>23</td>
<td>15</td>
<td>33</td>
<td>0.54</td>
</tr>
<tr>
<td>CL</td>
<td>1987</td>
<td>98</td>
<td>33</td>
<td>17</td>
<td>48</td>
<td>0.51</td>
</tr>
<tr>
<td>CL</td>
<td>1988</td>
<td>59</td>
<td>34</td>
<td>7</td>
<td>18</td>
<td>0.69</td>
</tr>
<tr>
<td>CL</td>
<td>1989</td>
<td>91</td>
<td>30</td>
<td>16</td>
<td>45</td>
<td>0.50</td>
</tr>
<tr>
<td>TDF</td>
<td>1987</td>
<td>103</td>
<td>38</td>
<td>20</td>
<td>45</td>
<td>0.57</td>
</tr>
<tr>
<td>TDF</td>
<td>1988</td>
<td>116</td>
<td>40</td>
<td>24</td>
<td>52</td>
<td>0.55</td>
</tr>
<tr>
<td>TDF</td>
<td>1989</td>
<td>107</td>
<td>40</td>
<td>21</td>
<td>46</td>
<td>0.57</td>
</tr>
<tr>
<td>TG</td>
<td>1987</td>
<td>47</td>
<td>20</td>
<td>8</td>
<td>19</td>
<td>0.60</td>
</tr>
<tr>
<td>TG</td>
<td>1988</td>
<td>47</td>
<td>26</td>
<td>7</td>
<td>14</td>
<td>0.70</td>
</tr>
<tr>
<td>TG</td>
<td>1989</td>
<td>44</td>
<td>15</td>
<td>9</td>
<td>20</td>
<td>0.54</td>
</tr>
<tr>
<td>TrDF</td>
<td>1987</td>
<td>179</td>
<td>83</td>
<td>30</td>
<td>67</td>
<td>0.63</td>
</tr>
<tr>
<td>TrDF</td>
<td>1988</td>
<td>167</td>
<td>77</td>
<td>29</td>
<td>61</td>
<td>0.63</td>
</tr>
<tr>
<td>TrDF</td>
<td>1989</td>
<td>178</td>
<td>74</td>
<td>32</td>
<td>71</td>
<td>0.60</td>
</tr>
<tr>
<td>TEF</td>
<td>1987</td>
<td>227</td>
<td>132</td>
<td>29</td>
<td>65</td>
<td>0.71</td>
</tr>
<tr>
<td>TEF</td>
<td>1988</td>
<td>238</td>
<td>136</td>
<td>32</td>
<td>70</td>
<td>0.71</td>
</tr>
<tr>
<td>TEF</td>
<td>1989</td>
<td>222</td>
<td>121</td>
<td>31</td>
<td>70</td>
<td>0.69</td>
</tr>
<tr>
<td>TS</td>
<td>1987</td>
<td>166</td>
<td>83</td>
<td>25</td>
<td>57</td>
<td>0.65</td>
</tr>
<tr>
<td>TS</td>
<td>1988</td>
<td>157</td>
<td>78</td>
<td>25</td>
<td>54</td>
<td>0.65</td>
</tr>
<tr>
<td>TS</td>
<td>1989</td>
<td>183</td>
<td>80</td>
<td>29</td>
<td>74</td>
<td>0.60</td>
</tr>
<tr>
<td>T</td>
<td>1987</td>
<td>33</td>
<td>9</td>
<td>7</td>
<td>17</td>
<td>0.50</td>
</tr>
<tr>
<td>T</td>
<td>1988</td>
<td>22</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>0.62</td>
</tr>
<tr>
<td>T</td>
<td>1989</td>
<td>40</td>
<td>10</td>
<td>9</td>
<td>21</td>
<td>0.48</td>
</tr>
</tbody>
</table>
It is, however, not clear whether the value given by Ajtay et al. is appropriate for boreal deciduous coniferous forest or boreal forest – tundra ecotone (forest tundra). Potter et al. (1993) calculated C to be 13 mol m\(^{-2}\) yr\(^{-1}\), which is 31% lower than the present result. Hunt et al. (1996) calculated C to be 17 mol m\(^{-2}\) yr\(^{-1}\), which is in agreement with the present result. Lloyd (1999) calculated C to be 19 mol m\(^{-2}\) yr\(^{-1}\), which is 11% higher than the present result. For deciduous and evergreen coniferous forests in Siberia, Schulze et al. (1999) determined above ground production to be 7 mol m\(^{-2}\) yr\(^{-1}\), and depending upon the assumption used to determine below-ground production (turnover of fine roots), C was estimated to be 9-12 mol m\(^{-2}\) yr\(^{-1}\). For a deciduous coniferous stand near Tura (64.3°N, 100.2°E), Kajimoto et al. (1999) determined above ground production to be 6 mol m\(^{-2}\) yr\(^{-1}\), and depending upon the assumption used to determine below-ground production (turnover of fine roots), C was estimated to be 8-31 mol m\(^{-2}\) yr\(^{-1}\). The present values of C for 1987 and 1988 are fairly consistent with these estimated values, and, although the result for 1989 is somewhat higher, it is within the range of estimated values (Table 5).

Table 6

<table>
<thead>
<tr>
<th>Biome</th>
<th>Present</th>
<th>Lieth & Box</th>
<th>Ruimy et al.</th>
<th>Ajtay et al.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A(\sigma)</td>
<td>C</td>
<td>R/A(\sigma)</td>
<td>A(\sigma)</td>
<td>C</td>
</tr>
<tr>
<td>BDF</td>
<td>40</td>
<td>17</td>
<td>0.57</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>BEF</td>
<td>76</td>
<td>35</td>
<td>0.54</td>
<td>51</td>
<td>32</td>
</tr>
<tr>
<td>CL</td>
<td>82</td>
<td>37</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TDF</td>
<td>108</td>
<td>48</td>
<td>0.56</td>
<td>68</td>
<td>40</td>
</tr>
<tr>
<td>TG</td>
<td>46</td>
<td>18</td>
<td>0.62</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>TrDF</td>
<td>175</td>
<td>66</td>
<td>0.62</td>
<td>159</td>
<td>74</td>
</tr>
<tr>
<td>TEF</td>
<td>229</td>
<td>68</td>
<td>0.70</td>
<td>289</td>
<td>99</td>
</tr>
<tr>
<td>TS</td>
<td>169</td>
<td>62</td>
<td>0.63</td>
<td>167</td>
<td>74</td>
</tr>
<tr>
<td>T</td>
<td>32</td>
<td>15</td>
<td>0.52</td>
<td>17</td>
<td>12</td>
</tr>
</tbody>
</table>

\(^a\) (Boreal coniferous, open); b (Boreal coniferous, closed); c (Temperate annuals); d (Temperate deciduous/mixed); e (Temperate dry grassland); f (Tropical seasonal forest); g (Tropical humid forest); h (Grass dominated savanna); i (Low arctic/alpine).

While there are substantial differences in A\(\sigma\) calculated in the present study and those determined from LB’s model and calculated by Ruimy et al. (1996) (Table 6), there does not appear to be any measured gross production or respiration against which to evaluate these calculated results. The present R/A\(\sigma\) compares well with Ruimy et al. but substantially higher than that predicted by LB’s model.

The calculated for C for the BEF area is 9% higher than the value given by Ajtay et al. and that predicted by LB’s model, and 25% higher than the value calculated by Ruimy et al. (1996) (Table 6). Using a calibrated process-based model McGuire et al. (1992) calculated C to be 19 mol m\(^{-2}\) yr\(^{-1}\) for boreal forest, which is 84% lower than the present calculation. Using a calibrated radiation use efficiency based model, Potter et al. (1993) calculated mean C for needleleaf evergreen trees to be 19 mol m\(^{-2}\) yr\(^{-1}\), which is about half the value calculated in this study. Lloyd (1999) calculated C to be 10 mol m\(^{-2}\) yr\(^{-1}\), which is...
about one third the value calculated here. The calculated \(A_g \) is 49% and 25% higher than that from LB's model and estimated by Ruimy et al. (1996) respectively. The calculated ratio \(R/A_g \) is much higher than that predicted by LB's model, but agrees well with that calculated by Ruimy et al. (1996). Ryan et al. (1997) have given carbon balance data for two boreal coniferous stands each of *Picea mariana* and *Pinus banksiana*, while Malhi et al. (1999) have given such data for one stand of *Picea mariana*. The mean (standard deviation, range, \(n=5 \)) of \(A_g \) is 80 (11, 64-91) mol m\(^{-2}\) yr\(^{-1}\), \(C \) is 26 (10, 19-43) mol m\(^{-2}\) yr\(^{-1}\), \(R \) is 54 (14, 37-69) mol m\(^{-2}\) yr\(^{-1}\), and \((R/A_g) \) is 0.67 (0.12, 0.46-0.77). The present \(A_g \) is 5% lower, the \(C \) is 35% higher, while (\(R/A_g \)) is 19% lower than the mean values from these carbon balance data, although the present results for \(C \) and \((R/A_g) \) are within the range of the carbon balance data. It appears that the present calculations are underestimating \(R \) by about 20%.

The calculated \(C \) for the CL area is 18% lower than the value given by Ajtay et al. (Table 6). Considering the specific crops which are grown within and around the study area and field measurements of dry matter production of these crops, the \(C \) for the CL area is estimated to be about 49 mol m\(^{-2}\) yr\(^{-1}\) (Appendix D), and the calculated \(C \) is 24% lower. Warnant et al. (1994) calculated \(C \) to be 64 mol m\(^{-2}\) yr\(^{-1}\), which is 42% higher than the present result. Potter et al. (1993) calculated mean \(C \) for all cultivated areas to be 24 mol m\(^{-2}\) yr\(^{-1}\). Lloyd (1999) calculated \(C \) to be 106 mol m\(^{-2}\) yr\(^{-1}\), which is about a factor of two higher than the present result. The results in Table 5 show that \(C \) for 1988 is substantially lower than the other two years. The average \(C \) for 1987 and 1989 is 47 mol m\(^{-2}\) yr\(^{-2}\), which is 4% higher than the value given by Ajtay et al. but 4% lower than the estimated value for the area (Appendix D). Considering available measurements, Amthor (1989) has suggested that annual respiration (\(R \)) for CL is about 50% of \(A_g \). The present calculations, averaged over the three years, are giving this fraction as 55% (Table 6). Again, if the results for 1988 are excluded, the \(R/A_g \) for the other two years agrees well with that suggested by Amthor (1989) (Table 5).

The present result for \(C \) for the TDF area agrees well with the value given by Ajtay et al. (1979) but is 20% and 9% higher than that derived from LB's model and calculated by Ruimy et al. (1996) respectively (Table 6). McGuire et al. (1992) calculated \(C \) to be 61 mol m\(^{-2}\) yr\(^{-1}\), which is 21% higher than the present result. Warnant et al. (1994) calculated \(C \) to be 55 mol m\(^{-2}\) yr\(^{-1}\), which is 13% higher than the present result. Potter et al. (1993) calculated mean \(C \) for broad-leaf deciduous and mix of broad-leaf and needle-leaf trees to be 26 mol m\(^{-2}\) yr\(^{-1}\), which is 85% lower than the present value. The present \(A_g \) is, respectively, 59% and 13% higher than that derived from LB's model and calculated by Ruimy et al. (1996). The carbon balance data given in Kira (1975), Ryan (1991) and Malhi et al. (1999) give mean (standard deviation, range, \(n=10 \)) of \(A_g \) as 113 (41, 56-181) mol m\(^{-2}\) yr\(^{-1}\), \(C \) as 57 (14, 30-79) mol m\(^{-2}\) yr\(^{-1}\), \(R \) as 56 (31, 26-120) mol m\(^{-2}\) yr\(^{-1}\), and \((R/A_g) \) as 0.48 (0.09, 0.37-0.66). These mean \(A_g \) and \(C \) are, respectively, 4% and 16% higher, while the mean \((R/A_g) \) is 17% lower than the present results. These carbon balance data data suggest that \(R \) is being overestimated by about 10%.

The present result for \(C \) for the TG area is 5% lower than the value given by Ajtay et al. (1979) but it is 18% and 56% lower than that derived from LB's model and calculated by Ruimy et al. (1996) respectively (Table 6). McGuire et al. (1992) calculated \(C \) to be 17 mol m\(^{-2}\) yr\(^{-1}\) for temperate short grassland, which is 6% lower than the present result. Potter et al. (1993) calculated \(C \) to be 15 mol m\(^{-2}\) yr\(^{-1}\) for perennial grassland, which is 20% lower than the present result. Warnant et al. (1994) calculated \(C \) to be 28 mol m\(^{-2}\) yr\(^{-1}\) for grassland, which is 36% higher than the present result. Lloyd (1999) calculated \(C \) for grasslands to be 27 mol m\(^{-2}\) yr\(^{-1}\), which is 33% higher than the present result. The present \(A_g \) is 35% higher than that from LB's model, and 31% lower than that calculated by Ruimy et al. (1996). The present \(R/A_g \) (viz., 0.62) is substantially higher than that from LB's model and determined by Ruimy et al. (ca. 0.37). Sims & Coupland (1979) have presented measurements for net primary production at 10 locations for one to three years periods, which give mean (standard deviation, range, \(n=24 \)) as 0.80 (0.30, 0.23-1.43) kg (dry matter) m\(^{-2}\) yr\(^{-1}\). These measurements at the Matador (50.7°N, 107.8°W) site, which is at the similar latitude as the present study area and has similar annual precipitation (338 mm), reported for three years give mean and the range of \(C \), respectively, as 0.70 and 0.54-0.87 kg (dry matter) m\(^{-2}\) yr\(^{-1}\). The mean (range) NPP at Matador would correspond to \(C \) of 23 (18-29) mol m\(^{-2}\) yr\(^{-1}\), if the carbon content of dry matter is taken to be 40% (Dwivedi 1971; Hughes et al. 2000)."
The present result for C is 22% lower than the mean value at Matador, but it is at the lower end of the range. Heslehurst & Wilson (1974) have present field data for R/As of Panicum maximum as 0.57, while Ryan (1991) has reported two studies giving this ratio as 0.53 and 0.61. While the present result for R/Ag averaged over the three years (viz., 0.62; Table 6) is little higher than these reported measurements, the results for C and R/As for 1987 and 1989 are more along the line of above quoted measurements (Table 5).

The calculated C for the TEF area is 10% higher than the value given by Ajtay et al. (1979) but it is 11% lower than that from LB’s model and 20% higher than that calculated by Ruimy et al. (1996) (Table 6). Warrant et al. (1994) calculated C to be 59 mol m\(^{-2}\) yr\(^{-1}\), which is 12% lower than the present result. Using a process-based model Raich et al. (1991) determined C to be 70 mol m\(^{-2}\) yr\(^{-1}\), which is 6% higher than the present result. Estimates from the measurements reported at four sites give C in the range 44-80 mol m\(^{-2}\) yr\(^{-1}\) (Appendix E), which averages to 58 mol m\(^{-2}\) yr\(^{-1}\). The present result (66 mol m\(^{-2}\) yr\(^{-1}\)) is 14% higher than this average. The present value of R/As (viz., 0.62) agrees well with Ruimy et al. (1996) (viz., 0.60), but 17% higher than that predicted by LB’s model (0.53). Brown & Lugo (1982) have given gross and net dry matter production for a stand of sub-tropical dry forest near Ensenada (18.0\(^{0}\)N, 65.9\(^{0}\)W) as, respectively, 19.0 and 11.0 t ha\(^{-1}\) yr\(^{-1}\), which would give R/As as 0.58.

The present result for C for the TEF area is 21% lower than the value given by Ajtay et al. (1979) and 31% lower than that from LB’s model, but 10% higher than that calculated by Ruimy et al. (1996) (Table 6). Warrant et al. (1994) calculated C to be 77 mol m\(^{-2}\) yr\(^{-1}\), which is 12% higher than the present result. Potter et al. (1993) calculated C to be 86 mol m\(^{-2}\) yr\(^{-1}\), which is 21% higher than the present value. Modeling by Raich et al. (1991) had given C as 81 mol m\(^{-2}\) yr\(^{-1}\), which is 16% higher than the present result. The present As is 21% lower than that from LB’s model, but 39% higher than that estimated by Ruimy et al. Mearements at Khao Chong (7.6\(^{0}\)N, 99.8\(^{0}\)E) reported by Kira (1975) give As as 334 mol m\(^{-2}\) yr\(^{-1}\), while gross ecosystem production at Reserva Jaru (10.1\(^{0}\)S, 61.9\(^{0}\)W) and near Manaus (2.5\(^{0}\)S, 60.1\(^{0}\)W) were determined to be, respectively, 204 and 250 mol m\(^{-2}\) yr\(^{-1}\) (Lloyd et al. 1985; Malhi et al. 1998). The present value of As is within the range of these reported measurements, and it agrees well with the average of two measurements within the Amazonian forest (viz., 204 and 250 mol m\(^{-2}\) yr\(^{-1}\)). The ratio (R/As) was determined to be 0.66 at Khao Chong (Kira 1975), and 0.46 near Manaus (Malhi et al. 1999). At El Verde (18.3\(^{0}\)N, 65.8\(^{0}\)W), net and gross dry matter production were determined to be, respectively, 28.9 and 100 t ha\(^{-1}\) yr\(^{-1}\) (Lieth & Box 1977), giving (R/As) as 0.71. For Pasoh Forest (3.0\(^{0}\)N, 102.3\(^{0}\)E), net and gross dry matter production have been determined to be, respectively, 22.5 and 81 t ha\(^{-1}\) yr\(^{-1}\) (Aoki et al. 1975; Cannell 1982; Yoda 1983), which would give (R/As) as 0.72. Allen & Lemon (1976) have reported the average gross and net CO\(_2\) assimilation for two days of measurements for a stand near Turrialba (9.9\(^{0}\)N, 83.6\(^{0}\)W) as, respectively, 41.6 and 17.0 g (CO\(_2\)) m\(^{-2}\) d\(^{-1}\), which would give (R/As) as 0.59. While the present result for R/Ag (viz., 0.70) is within the range of reported values, measurements near Manaus reported by Malhi et al. (1999) and comparison in Table 6 suggest that respiration is being overestimated by about 20%.

The calculated C for the TS area is 28% lower than the data given by Ajtay et al. and it is 19% lower than that from LB’s model but 15% higher than that calculated by Ruimy et al. (Table 6). Using an empirical model, Scholes & Hall (1996) estimated C to be 53 mol m\(^{-2}\) yr\(^{-1}\), which is 17% lower than the present result. Warrant et al. (1994) calculated C to be 54 mol m\(^{-2}\) yr\(^{-1}\), which is 15% lower than the present result. Modeling by Raich et al. (1991) had given C to be 78 mol m\(^{-2}\) yr\(^{-1}\), which is 21% higher than the present result. Scholes & Hall (1996) have summarized available measurements of C by TS areas. According to this summary, the data is available at Nylsvley (24.7\(^{0}\)S, 28.7\(^{0}\)E) and three sites near Lamato (6.2\(^{0}\)N, 5.0\(^{0}\)E). By taking the carbon content of dry matter for trees and grasses as, respectively, 48% and 40%, one obtains the value of C at Nylsvley as 35 mol m\(^{-2}\) yr\(^{-1}\) (of which 46% was contributed by the grass layer), while it averages to be 104 mol m\(^{-2}\) yr\(^{-1}\) (range 93-110 mol m\(^{-2}\) yr\(^{-1}\)) for sites near Lamato (of which 94% was contributed by the grass layer). For a TS within the Chandraprabha sanctuary (25.9\(^{0}\)N, 83.2\(^{0}\)E), Singh (1989) has given C to be 39 mol m\(^{-2}\) yr\(^{-1}\) (of which 78% was contributed by the grass layer). For three sites on the Vindhya plateau (24.2\(^{0}\)-24.4\(^{0}\)N, 82.9\(^{0}\)-83.1\(^{0}\)E), Pandey & Singh (1992) found the average C to be 58 mol m\(^{-2}\) yr\(^{-1}\) (range 50-67 mol m\(^{-2}\) yr\(^{-1}\)).
herbaceous cover contributing about 74% of the total C. The present value of C is within the range of these measurements. The average of the C values at Nylsvley, Lamoto, Chandraprabha and Vindhya is 59 mol m⁻² yr⁻¹, which is 5% lower than the calculated C. The present Ag agrees well with that calculated from LB's model, but it is 48% higher than the value calculated by Ruimy et al. The present R/Ag is higher than that predicted by LB's model and calculated by Ruimy et al. by about 17%. I could not find any reported measurements for Ag and R, which might allow a better understanding of the discrepancy of 28% for C (Table 6). However, based on some assumptions, McGuire et al. (1992) determined carbon balance at Nylsvley, which gives R/Ag as 0.60. The present R/Ag is 5% higher.

The present result for C for the T area is 15% higher than the value given by Ajtay et al. and 25% higher than the values from LB's model and that calculated by Ruimy et al. (Table 6). Calculation of Warnant et al. (1994) had given C to be 18 mol m⁻² yr⁻¹, which is 17% higher than the present result. Potter et al. (1993) calculated C to be 7 mol m⁻² yr⁻¹, which is less than half of the present result. McGuire et al. (1992) calculated C to be 8 mol m⁻² yr⁻¹ for wet/moist tundra, which is 88% lower than the present result. Considering available measurements, Bliss (2000) has given net primary production to be in the range, 0.15-0.45 kg (dry matter) m⁻² yr⁻¹, which would be equivalent to C of 6-16 mol m⁻² yr⁻¹ if carbon content of dry matter is taken to be 48%. The present result is at the high end of this range (Table 6). Using a calibrated ecosystem-level model, Hobbie et al. (1998) determined C during one year (1995) for the Kuparuk River basin (ca. 69°-70°N, 149.2°-149.8°W) to be 8 mol m⁻² yr⁻¹, which is about half the value calculated here for three year average (15 mol m⁻² yr⁻¹) but agrees with the result for 1988 (Table 5). The present Ag for 1987 and 1988 are within the range suggested by Bliss (2000), but it is outside the range for 1989 (Table & 5). The present Ag is 88% and 60% higher than, respectively, from LB's model and that calculated by Ruimy et al. The present R/Ag is higher than that calculated from LB's model and obtained by Ruimy et al. Considering available data, McGuire et al. (1992) reported C and Ag for wet tundra near Toolik Lake (68.6°N, 149.6°W) to be, respectively, 10 and 37 mol m⁻² yr⁻¹, giving R/Ag as 0.73. Based on measurements and ecosystem-level modeling, McKane et al. (1997) determined Ag for Carex-Eriophorum meadow vegetation at Barrow (71.3°N, 156.7°W) and tussock tundra at Toolik Lake (68.6°N, 149.6°W) to be, respectively, 17 and 39 mol m⁻² yr⁻¹, and the present Ag for three year average (32 mol m⁻² yr⁻¹; Table 6) is within this range, but Ag for 1989 is outside this range (Table 5). Rather high Ag for 1989 is because of significantly higher precipitation during this year (Table 4), and thus minimizing stress. McKane et al. (1997) determined R/Ag for two sites to be, respectively, 0.57 and 0.76, and, while the present result for three year average (0.52; Table 6) is outside the range, the result for 1988 is within the range (Table 5). Both Ag and R/Ag for 1989 are outside the range determined from measurements and results from a calibrated model (Table 5). If we exclude the results for 1989, the average C for the other two years, viz., 12 mol m⁻² yr⁻¹, is 8% lower than the value given by Ajtay et al. and R/Ag (0.56) is closer to the range of values determined by McKane et al. (1997).

From the above comparisons, the calculated C (averaged for the three years) differ by about 30% from the measurements summarized by Ajtay et al. (1979) for the BDF and TS areas; the discrepancy for all other biome areas is generally less than 20%. There are more reported measurements for C than for Ag or R. These data suggest that R is being underestimated for the BEF area, and overestimated for TEF area by about 20%.

Results of sensitivity analysis

Sensitivity analysis has been done for variability in the growth conversion efficiency (YG; Table 1), differences in the temperature response function for maintenance respiration (f(T); Eq. 4 and Fig. 2), distinguishing the temperature of shoot response function for maintenance respiration per unit seasonal maximum leaf area index (Eq. 14 and Table 2), the effect of variations in the fraction of tree cover in the TS area (f w, Eq. 20), and decreasing Rm of foliage and roots per unit nitrogen content for tropical biomes as compared to temperate biomes (i.e., decreasing the values of Table 3 for tropical biomes) due to possible adaptation to growing temperature (Ryan 1995).

Any variability in YG can directly translate to an equivalent variability in Rs (Eq. 2) and C (Eq. 19). Thus, 12% increase (decrease) in YG can increase (decrease) the calculated C values by 12%.
Any discrepancy between the calculated and observed C up to about 12% may not be resolved satisfactorily because of the uncertainty in prescribingYG (Table 1). There is insufficient data to resolve possible biome-specific differences (for example, YG for alpine and arctic plants could well be lower than that for tropical plants because of higher lipid content of tundra plants; Golley 1961). Modeling of Choudhury (2000c) showed that R/Ag decreased during growth when YG was assumed not to change during growth, but variations in R/Ag decreased considerably when changes in YG during growth was taken into consideration. These sensitivity results suggest that a better quantification of YG is desirable for a more accurate assessment of R/Ag.

The impact of changing the temperature response function from non-linear to linear on Rm, R, and C (averaged for the three years) is given in Table 7. The impact is found to be generally less than 5%, except for the BDF, TDF and T areas, for which R increased by about 10% and C decreased by 10%.

The results presented above were obtained by taking shoot and root temperature to be equal to air temperature, as was done in the studies reported by Raich et al. (1991), McGuire et al. (1992), Warrant et al. (1994) and Ruimy et al. (1996), although Hunt et al. (1996) distinguished the temperature of shoot and roots. Measurements reported by Toy et al. (1978), Zheng et al. (1993), among others, show that mean soil temperature of vegetated ground in non-mountainous areas at 0.1-0.3 m depth during the growing season can differ from air temperature by 1-3°C. Calculations done by taking root temperature to be equal to soil temperature, rather than air temperature, showed that R is not affected by more than 3% (Table 8). Changes of less than 1% are calculated for crop land (CL) and tropical evergreen forest (TEF) areas. For CL, nitrogen content of roots is about 15% of that in shoot (Fig. 3; Eqs. 8 and 9) and thus its contribution to the maintenance respiration of a stand is small. For TEF, soil temperature did not change significantly for being in moist condition and because of high vegetation cover (leaf area index of about 5). Measurements of temperature for a typical day (November 22, 1973) above and within a rainforest (Pasoh Forest; 3.0°N, 102.3°E) reported by Aoki et al. (1975) show that mean daily temperature above the canopy and at soil surface to be almost identical (respectively, 23.5°C and 23.4°C). Thus, it is reasonable to approximate mean daily root temperature by the corresponding air temperature for TEF area.

The sapwood maintenance respiration per unit

<table>
<thead>
<tr>
<th>Biome</th>
<th>∆Rm (%)</th>
<th>∆R (%)</th>
<th>∆C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>+13</td>
<td>+7</td>
<td>-10</td>
</tr>
<tr>
<td>BEF</td>
<td>+9</td>
<td>+4</td>
<td>-5</td>
</tr>
<tr>
<td>CL</td>
<td>+6</td>
<td>+4</td>
<td>-4</td>
</tr>
<tr>
<td>TDF</td>
<td>+19</td>
<td>+9</td>
<td>-11</td>
</tr>
<tr>
<td>TG</td>
<td>+4</td>
<td>+2</td>
<td>-4</td>
</tr>
<tr>
<td>TrDF</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TEF</td>
<td>-2</td>
<td>-2</td>
<td>+2</td>
</tr>
<tr>
<td>TS</td>
<td>-2</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>T</td>
<td>+28</td>
<td>+12</td>
<td>-12</td>
</tr>
</tbody>
</table>

Table 8. Results of sensitivity analysis for distinguishing shoot and root temperature for calculating their maintenance respiration. Percent change from the base values (Tables 5 and 6) for maintenance respiration of the stand (ARm), total respiration (AR) and net carbon accumulation (AC) of the biome areas, averaged for the three years, when root temperature was taken to be soil temperature rather than air temperature.

<table>
<thead>
<tr>
<th>Biome</th>
<th>∆Rm (%)</th>
<th>∆R (%)</th>
<th>∆C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>+3</td>
<td>+2</td>
<td>-2</td>
</tr>
<tr>
<td>BEF</td>
<td>+3</td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>CL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TDF</td>
<td>+4</td>
<td>+2</td>
<td>-2</td>
</tr>
<tr>
<td>TrDF</td>
<td>+2</td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>TEF</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>TS</td>
<td>+1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>+5</td>
<td>+2</td>
<td>-2</td>
</tr>
</tbody>
</table>
seasonal maximum leaf area index was found to have a coefficient of variation of 33% and 58%, respectively, for needle leaf and broad leaf vegetation (Table 2). The impact of increasing stem maintenance respiration by 35% on total \(R_m \), \(R \), and \(C \) (averaged for the three years) is given in Table 9. The total \(R_m \) was found to increase by 1% for the TS area to 9% for the TDF and TrDF areas, while \(C \) decreased by 1% for the TS and T areas to 11% for the TEF area. Thus, uncertainty in estimating stem maintenance respiration could be introducing an uncertainty in determining \(C \) of about 10%.

The percent tree cover in the TS area was taken to be 25%, as being the average of the range of tree cover (10% to 40%) according to the description of Matthews (1983). When the tree cover was decreased to 10%, \(R \) decreased by 8% and \(C \) increased by 14% as compared to the values given in Table 5. When the tree cover was increased to 40%, \(R \) increased by 5% and \(C \) decreased by 9%. Thus, for the same change in fractional tree cover, \(C \) increases more when the fractional cover is decreased as compared to decrease in \(C \) when the fractional cover is increased. Several field studies have reported concave relations between above ground herbaceous production and tree cover (Beale 1973; Jackson & Ash 1998). The discrepancy between the present calculations for \(C \) and the data reported by Ajtay et al. (1979) decreases from 28% to 19% when fractional tree cover is decreased from 25% to 10%. While much discrepancy still remains between the present \(C \) and the value given by Ajtay et al. (1979), available observations are rather limited (Scholes & Hall 1996) to quantify this discrepancy more objectively.

Eq. (7a), developed from observations for temperate and Mediterranean species, has been applied to tropical biomes. However, \(R_m \) per unit nitrogen content for boreal species has been observed to be higher compared to temperate species (Eq. 7b vs. Eq. 7a), presumably in response to adaptation to colder climate (Ryan 1995). Then, one may hypothesize that \(R_m \) per unit nitrogen content for tropical biomes would be lower compared to that for temperate biomes in response to adaptation to warmer climate. The impact of decreasing \(R_m \) of foliage and roots of tropical biomes (\(\phi \) in Table 3) by a factor 1.5 on the fluxes is given in Table 10. It is seen that the total maintenance respiration (\(R_m \)) decreases by 25% (for TrDF area) to 32% (for TS area), \(R \) decreases by 12% (for TrDF area) to 18% (for TS area), and \(C \) increases by 20% (for TrDF area) to 36% (for TS area). Considering this sensitivity, it is desirable to know the extent to which Eq. (7a) applies to tropical biomes. It is also clear that \(R/Ag \) of tropical biome areas (particularly, the tropical evergreen forest) can be rather comparable to that for the temperate areas, and thus the variability of \(R/Ag \) among biomes can be lower.

Summary and conclusions

The rate of net carbon accumulation per unit area by plant communities is the difference of the rate of gross photosynthesis by a canopy and the rate autotrophic respiration of the stand per unit ground area. While seasonal changes in the maximum rate photosynthesis by leaves and radiation intercepted by a canopy are the major determinants of the rate of gross photosynthesis by a canopy, the rate of net carbon accumulation per unit area by plant communities is the difference of the rate of gross photosynthesis by a canopy and the rate autotrophic respiration of the stand per unit ground area.
opy, seasonal changes in biomass of organs, their specific respiration coefficient and temperature are important determinants of the rate of respiration by the stand, in addition to photosynthesis. A better understanding of the carbon balance of plant communities, and how this balance might change due to changes in land cover or environmental conditions requires explicit evaluation of the rates of photosynthesis and respiration.

The autotrophic respiration (R) was calculated as the sum of maintenance (R_m) and growth (R_g) components using satellite and field observations. The R_m of foliage and living fine roots per unit ground area for different biomes was determined objectively from observed nitrogen content of these organs per unit ground area, and taking into consideration of diurnal and seasonal variations of temperature. The R_m of stems of herbaceous crops and natural grasslands was also determined from the nitrogen content. An empirical equation for sapwood maintenance respiration was derived according to pipe model, which was found to be consistent with an equation derived independently considering sapwood biomass and its maintenance coefficient. The R_g was calculated from the difference of gross photosynthesis by a canopy per unit ground area (A_g) and R_m. The A_g was expressed as a product of biome-specific radiation use efficiency for gross photosynthesis under unstressed conditions (RUE), intercepted photosynthetically active radiation (IPAR), and stress factors to account for soil water stress and temperature away from optimum. The unstressed RUE for different biomes was determined from the maximum rate of photosynthesis by leaves, foliage temperature and fractional diffuse incident radiation. All stresses which affect A_g also affect R. The rate of net carbon accumulation per unit ground area (C) was determined as the difference of A_g and R.

Calculations were done using spatially representative, synchronous data for 36 consecutive months (1987-1989) derived from satellite and field observations for large contiguous areas (ca. 10^5 km^2) of boreal deciduous coniferous forest (BDF), boreal evergreen coniferous forest (BEF), crop land (CL), temperate deciduous forest (TDF), temperate grassland (TG), tropical deciduous forest (TrDF), tropical evergreen forest (TEF), tropical savanna (TS), and tundra (T).

On annual basis, R_m was found to exceed R_g for all biome areas. Averaged for the three years, the ratio of R_m and R was found to be highest for TEF (0.81), followed by TS (0.75), TrDF (0.72), TG (0.71), CL (0.71), BDF (0.66), TDF (0.65), BEF (0.61), and T (0.58). The ratio of R and A_g was found to be highest for TEF (0.70), followed by TS (0.63), TG and TrDF (0.62), BDF (0.57), TDF (0.56), CL (0.55), BEF (0.54), and T (0.52). Inter-annual variation of the fluxes was generally within 15%, except for the BDF area for which C during 1989 was about a factor two higher than the other two years, while C for the CL area during 1988 was about 62% lower than the other two years. The C for the TS area during 1989 was about 32% higher than the other two years. The C for the T area for 1988 was half the value found for 1987, and nearly one-third the value for 1989. Previous large-scale modeling studies did not addressed inter-annual variations of respiration and net carbon accumulation for different biomes.

The calculated C (averaged for the three years) was found to be about 30% lower for the BDF and TS areas, when compared against a synthesis of observed and likely values of C. However, in the absence of observed A_g and R, it could not be determined which of these two fluxes is contributing more, and/or which way, to this discrepancy. The discrepancy for C for other biome areas was generally less than 20%. Aggregately for all biome area, the calculated C was about 10% lower than the reported data. The calculated A_g values were generally within the range of measurements, where available. The present calculations for R might be underestimating the flux for BEF area, and overestimating it for TEF area by about 20%.

Sensitivity analysis was done to assess the impact of variability in the growth conversion efficiency (YG), differences in the temperature response function for maintenance respiration, differences in shoot and root temperature, variability in the sapwood maintenance respiration per unit of the seasonal maximum leaf area index, the effect of variations in the fractional cover of trees in the TS area, and uncertainty in determining maintenance respiration per unit nitrogen content of tropical biomes from measurements on temperate species.

Any variability in YG directly translates to equivalent variability in C. Variability of YG was found to be about 12%, and, if this variability is assumed to be due only to differences in biochemical composition of plants, any discrepancy between the calculated and observed C up to about 12% cannot be resolved satisfactorily.
The impact of changing the temperature response function was found to be generally less than 5%, except for the TDF and T area, for which R increased by about 10% and C decreased by 10%. Calculations done by taking root temperature to be equal to soil temperature, rather than air temperature, showed that R is not affected by more than 3%.

The effect of increasing sapwood maintenance respiration by 35% was to increase total respiration by 1% (for the TS and T areas) to 5% (for the TrDF area), while C decreased by 1% (for the TS and T areas) to 11% (for the TEF area).

The fraction of woody cover in the TS area was taken to be 25%, being the average of the range of woody cover (10% to 40%) suggested for the area. When the woody cover was decreased to 10%, R decreased by 8% and C increased by 13%. When the woody cover was increased to 40%, R increased by 5% and C decreased by 9%.

Relationships between maintenance respiration and nitrogen content used in the present study are based upon observations for temperate, Mediterranean, and boreal species, and their applicability to tropical species is not known. When maintenance respiration foliage and roots per unit nitrogen content for the tropical biome areas was decreased by a factor of 1.5 as compared to that for temperate species, R for tropical biome areas decreased by 12-18% and C increased by 20-36%. Considering this sensitivity, it is desirable to determine variation of maintenance respiration with nitrogen content for tropical biomes. If maintenance respiration per unit nitrogen content for tropical species is observed to be lower than that for temperate species, R/Ag for the tropical biome areas could become comparable to that for the temperate regions.

The results presented in this study can be improved, for example, by quantifying, (a) temporal variation of biomass and nitrogen content of living fine roots in relation to those of foliage, and (b) foliage maintenance respiration per unit nitrogen content for species growing in the tropics.

References

Appendix A

This appendix elaborates on the data used to relate total respiring nitrogen content per unit ground area to the projected leaf area index (Lo) of ungrazed temperate grasslands.

By synthesizing available measurements, Jackson *et al.* (1997) and Gordon & Jackson (2000) have given average (standard deviation, n) living fine roots (less than 2 mm in diameter) biomass as 0.95 (0.078, 21) kg m⁻² and its nitrogen concentration as 1.11 (0.002, 54)% which would give the average nitrogen content of living fine roots per unit ground area (Nₗ) as 0.753 mol m⁻² (= 0.95 x 10⁻³ x 1.11 x 10⁻²/14). They have also given the percentage of total roots to be living fine roots as 63%.

The above data for nitrogen content of living fine root needs to be supplemented by the nitrogen content of living foliage and stem (Nf and Ns). Sims & Coupland (1979) have tabulated peak green shoot biomass and peak root biomass (live and dead) for grasslands at several locations according to the year of measurements (two to three years). There are 14 concurrent pairs of such data near five locations (Cottonwood, Matador, Osage, Pantex, and Pawnee). These data give the mean (standard deviation; n=14) peak green shoot biomass as 0.176 (0.082) kg m⁻², while mean peak root (live and dead) biomass as 1.461 (0.614) kg m⁻². Taking 63% of this mean peak root biomass one obtains 0.921 kg m⁻², which agrees well with the value for living root biomass given by Jackson *et al.* (1997) quoted above.

Measurements by Risser & Parton (1982) near Osage gave nitrogen concentration of live shoot at the time of peak green shoot biomass as 0.89%.

Thus, the average respiring nitrogen content per unit ground area, (Nf + Ns + 2 Nr), appears to be 1.618 mol m⁻².

Measurements by Risser & Parton (1982) near Osage gave nitrogen concentration of live shoot at the time of peak green shoot biomass as 0.89%.

Considering that leaf area index might provide an indicator of the above ground biomass (Singh & Joshi 1979), we wanted to relate the mean live shoot biomass to Lo. Measurements near Pawnee during 1970 gave peak Lo as 0.55 (Knight 1973), while the peak green shoot dry biomass as 0.091 kg m⁻² (Sims & Coupland 1979). Measurements near Matador gave the peak Lo during 1970 and 1971 as, respectively, 1.5 and 1.0 (Ripley & Redmann 1976), while the peak green shoot biomass was, respectively, 0.187 and 0.163 kg m⁻² (Sims & Coupland 1979). Measurements near Manhattan by Middleton (1992) at two sites dominated by grass species gave mean (standard deviation) Lo as 2.06 (0.44) and 1.43 (0.41), while the corresponding mean green shoot dry biomass were, respectively, 0.282 and 0.245 kg m⁻². These data give the mean (standard deviation, n=5) ratio of green shoot biomass and Lo as 0.152 (0.020) kg m⁻². Thus, Lo corresponding to the average green shoot biomass of 0.176 kg m⁻² has been taken to be 1.16 (=0.176/0.152).

The data presented above suggests that (Nf + Ns + 2 Nr) of 1.618 mol m⁻² might correspond to Lo of 1.16. If (Nf + Ns + 2 Nr) is considered to scale with Lo, one can write the following equation:

\[Nf + Ns + 2 Nr = 1.395 Lo \]

(A1) where the numerical coefficient is obtained as the ratio of 1.618 mol m⁻² for (Nf + Ns + 2 Nr) and 1.16 for Lo. While there is rather limited data to quantify the dynamics of living fine root nitrogen content in relation to that for shoot, the above parameterization does not assume fine root biomass to be equal to foliage biomass (Ruimy *et al.* 1996; Hunt *et al.* 1996).

Appendix B

This appendix elaborates on the data used to determine the maintenance respiration per unit ground area of tropical grasslands at 20°C.

Jackson *et al.* (1997) and Gordon & Jackson (2000) have given the mean (standard deviation, n=5) living fine root biomass as 0.51 (0.13) kg m⁻² and its nitrogen concentration as 1.11 (0.002)%.

These data give mean nitrogen content of living fines roots per unit ground area (Nₗ) as 0.404 mol m⁻². They also give the mean (standard deviation, n=5) total root biomass as 0.99 (0.24) kg m⁻² (fraction of living roots being about 52%).

Strugnell & Pigott (1978) have tabulated temporal variations of total (live and dead) root biomass for a tropical grassland near Mweye (0.2°S, 29.9°E), which show that the biomass during
January and February to be, respectively, 0.73 and 1.16 kg m\(^{-2}\). These root biomass values encompass the mean total root biomass given above (0.99 kg m\(^{-2}\)). The mean (standard deviation) of live shoot biomass during these two months has been given as 0.21 (0.11) and 0.19 (0.08) kg m\(^{-2}\), which averages to about 0.20 kg m\(^{-2}\). The average nitrogen concentration of live shoot during these two months has been given as, respectively, 1.83% and 1.96%. For a mean nitrogen concentration of 1.90%, one obtains nitrogen content of live shoot per unit ground area (= N\(_f\) + N\(_s\)) as 0.271 mol m\(^{-2}\). The mean (standard deviation) L\(_o\) for these two months has been tabulated as, respectively, 0.96 (0.31) and 1.45 (0.54), suggesting an average L\(_o\) of 1.2.

From the data given above, R\(_m\) o \((20)\) is obtained as:

\[
R_{m, o} (20) = 0.189 L_o \tag{B1}
\]

where the numerical coefficient has been calculated by taking \((N_f + N_s + 2 N_r)\) as 1.079 mol m\(^{-2}\) and L\(_o\) as 1.2 in Eq. (6a) \((0.21\times1.079/1.2=0.189)\).

Appendix C

The data given in Table 3 are elaborated in this appendix.

Unless stated otherwise, average biomass and nitrogen concentration of living fine roots given by Jackson et al. (1997) and Gordon & Jackson (2000) have been used to determine the nitrogen content of living fine roots per unit ground area for each biome \((N_f; \text{mol N m}^{-2})\) given in Table 3. These data are averages across location and time for specific biomes. The nitrogen content of roots has been supplemented by projected leaf area index (L\(_o\)) and foliage nitrogen content per unit ground area \((N_f; \text{mol N m}^{-2})\), as follows.

For a stand of boreal deciduous coniferous forest \((Larix gmelinii)\), Vygodskaya et al. (1997) have given L\(_o\), specific leaf weight and leaf nitrogen concentration as, respectively, 1.5, 138 g m\(^{-2}\) and 1.56%. These data give foliage biomass and nitrogen content as, respectively, 207 g m\(^{-2}\) and 0.231 mol m\(^{-2}\). The fine root biomass has been taken to be 1.5 times the foliage biomass (Kajimoto et al. 1999), and nitrogen concentration has been taken to be 1.11% (Gordon & Jackson 2000). Thus, nitrogen content of fine roots is obtained as 0.246 mol m\(^{-2}\).

The foliage biomass and L\(_o\) values of boreal evergreen coniferous forest have been determined from the paired data for these two canopy characteristics given in Cannell (1982) and Gower et al. (1997). When several such paired values were available from a locality, they have been averaged first so as to minimize possible bias introduced by that specific locality on the overall average. Thus, for example, the data for 17 stands of Picea abies at 62\(^\circ\)N, 34\(^\circ\)E given in Cannell (1982) have not been counted individuality, but as one average pair of values. The mean (standard deviation; n=6) L\(_o\) and foliage biomass were found to be, respectively, 5.2 (3.8) and 0.867 (0.426) kg m\(^{-2}\). The mean (standard deviation) obtained by excluding the highest and the lowest values are, respectively, 4.0 (0.8) and 0.750 (0.134) kg m\(^{-2}\) (n=4). Variability in the stand characteristics decreases considerably when the highest and the lowest values are excluded; the variability for L\(_o\) decreases from 73% to 20%, and for foliage biomass from 49% to 18%. These mean L\(_o\) and foliage biomass suggest an effective specific leaf weight of 0.188 kg m\(^{-2}\) (=0.750/4.0). The foliage nitrogen concentration of boreal conifer species given in Schulze et al. (1994) and Middleton et al. (1997) give the mean concentration (standard deviation; n=7) as 0.97 (0.13)%.

The data presented by Middleton et al. (1997) give average \((n=2)\) specific leaf weight and foliage nitrogen concentration of Picea glauca as, respectively, 0.193 kg m\(^{-2}\) and 0.95%. Thus, N\(_f\) has been calculated from biomass and nitrogen concentration as 0.520 mol m\(^{-2}\) (=0.750 x 10\(^3\) x 0.97 x 10\(^{-2}\)/14). For a desert shrub community, Chew & Chew (1965) have reported L\(_o\) to be in the range 0.9 and 1.3, from which an average value of 1.1 has been taken. They have also reported the specific leaf weight as 0.230 kg m\(^{-2}\), which gives foliage biomass as 0.253 kg m\(^{-2}\) (= 1.1 *0.230).

For Larrea tridentata, which was the dominant species of this community, Reich et al. (1999) have given the nitrogen concentration of leaf as 1.94%, and thus N\(_f\) is calculated to be 0.351 mol m\(^{-2}\). For a desert community dominated by Larrea divaricata, Whittaker & Niering (1975) have given L\(_o\) as 0.6 and foliage chlorophyll content as 0.34 g m\(^{-2}\). By taking molar weight of chlorophyll as 900 g mol\(^{-1}\) and the molar ratio of chlorophyll and nitrogen as 0.004 mol mol\(^{-1}\) (Pons et al. 1994; Ishida et al. 2000), we get N\(_f\) as 0.095 mol m\(^{-2}\). The average L\(_o\) and N\(_f\) for these two desert communities are, respectively, 0.9 and 0.223 mol m\(^{-2}\). For sclerophyllous shrubs, Rundel (1981) has given L\(_o\), foliage biomass and nitrogen concentration of leaves for seven dominant species (five ev-
evergreen and two deciduous) growing at Fundo Santa Laura (Chile; 33.1oS, 71.0oW). Mooney & Miller (1985) have given L_o, specific leaf weight, and nitrogen concentration of leaves for seven dominant evergreen shrub species growing at Echo Valley (USA; 32.9oN, 116.7oW). For these two data sets, mean (standard deviation, n=14) L_o is 2.2 (0.9) and N_f is 0.334 (0.147) mol m^{-2}. The mean (standard deviation, n=12) obtained by excluding the highest and lowest values are, 2.1 (0.7) for L_o, and 0.328 (0.124) mol m^{-2} for N_f.

For temperate evergreen coniferous forests, Harata et al. (1969) have given foliage biomass and N_f for stands of Cryptomeria japonica and Chamaecytrypis obusta, and L_o for these stands were determined using specific leaf weight of similar age stands (Cannell 1982). Webber (1977) has given foliage biomass and N_f for a stand of Pseudotsuga menziesii and L_o was determined using the specific leaf weight given by Turner et al. (2000). Ando et al. (1977) have given L_o and N_f for stands of Abies firma and Tsuga sieboldii. Alban et al. (1978) have given foliage biomass and N_f for stands of Pinus resinosa, P. banksiana and Picea glauca. For these stands L_o has been determined using specific leaf weight data (Cannell 1982, Reich et al. 1998). Grier et al. (1981) and Vogt et al. (1982) have given L_o and N_f for two stands of Abies amabilis, which have been averaged to form one pair of L_o and N_f. Gower et al. (1994) have given foliage biomass, among other data, for several stands of pine growing in temperate and other climate. These data for three stands (Pinus palustris, P. rigida, and P. strobus) growing in temperate climate were supplemented by specific leaf area and nitrogen concentration given by Reich et al. (1998). Foliage biomass and L_o data for three stands (P. sylvestris, Abies lasiocarpa, and Taxodium distichum) growing in temperate climate given by Cannell (1982) were supplemented by nitrogen concentration given by Reich et al. (1998). Pertinent data for P. radiata have been given by Ryan et al. (1996), while Law et al. (2000) have given such data for P. ponderosa. These data for 17 stands give mean (standard deviation, n=17) L_o as 4.9 (2.6) and N_f as 0.815 (0.294) mol m^{-2}. The mean (standard deviation, n=15) obtained by excluding the highest and the lowest values are, 4.7 (1.8) for L_o and 0.831 (0.246) mol m^{-2} for N_f.

For temperate broad-leaf deciduous forests, Khanna & Ulrich (1991) have given mean (standard deviation, n=19) of L_o, and foliage biomass as, respectively, 5.2 (0.3) and 0.350 (0.029) kg m^{-2}, while the nitrogen concentration of leaves for different species and sites quoted by Khanna & Ulrich (1991) give the average concentration as 2.23% (n=22). The N_f derived from mean foliage biomass and nitrogen concentration is 0.558 mol m^{-2}.

The L_o and foliage biomass values of tropical broad-leaf deciduous forests have been determined from the paired data given in Cannell (1982). The mean (standard deviation; n=10) of L_o was found to be 3.8 (1.5), and these for foliage biomass as 0.360 (0.139) kg m^{-2}. The mean (standard deviation) obtained by excluding the highest and the lowest values was 3.8 (1.2) for L_o and as 0.350 (0.117) kg m^{-2} for foliage biomass (n=8). These data give an effective specific leaf weight of 0.092 kg m^{-2}. The mean (standard deviation, n=46) foliage nitrogen concentration given by Schulze et al. (1994) is 2.71 (0.10)%.

Observations presented by Sobrado (1991) and Kitajima et al. (1997) give mean (standard deviation; n=16) specific leaf weight and nitrogen concentration as, respectively, 0.075 (0.026) kg m^{-2} and 2.79 (0.64)%.

Thus, nitrogen concentration of 2.71% has been used for calculating the foliage nitrogen content.

The L_o and foliage biomass of tropical evergreen forests within Brazil and Venezuela have been determined from the paired data given in Cannell (1982), Schulze (1982), Medina & Cuevas (1989), Malhi et al. (1999), and foliage nitrogen concentration in Schulze et al. (1994). The mean (standard deviation; n=7) of L_o was found to be 5.3 (1.3), and these for N_f as 0.740 (0.270) mol m^{-2}. The mean (standard deviation; n=5) obtained by excluding the highest and the lowest values is found to be 5.1 (0.4) for L_o and 0.769 (0.157) mol m^{-2} for N_f.

Shaver & Chapin (1991) have given L_o and N_f of vascular plants, among other data, for four tundra communities; tussock, shrub, wet sedge, and heath. The below-ground biomass of these four communities are given as, respectively, 0.482, 0.962, 0.349, and 0.103 kg m^{-2}. Because of substantial differences in L_o and N_f among these communities some thought was given in using data so as to be consistent with the data for living fine root biomass and nitrogen concentration given by Jackson et al. (1997) and Gordon & Jackson (2000). The root biomass of the shrub community (0.962 kg m^{-2}) is comparable to the value quoted by Jackson et al. (1997) (viz., 0.96 kg m^{-2}) and Jackson et al.
The calculated average values are given in Table 3, together with Lo, Nf and m-2 and 0.257 mol m-2 d-1, and for the wet sedge community are found to be, respectively, 1.1, 0.211 mol m-2 and 0.322 mol m-2 d-1.

Appendix D

This appendix elaborates on the data and methods used to determine net carbon accumulation (C) for the crop land area.

The study area for crop land includes a major portion of the State of Iowa and smaller portions of the States of Missouri, Nebraska, South Dakota, and Minnesota. Important crops for the State of Iowa, with respect to land area, are Zea mays, Glycine max and hays (primarily Madicago sativa and mixture), constituting respectively, about 56%, 36% and 8% of the total area of these crops (over 92,000 km2 USDA 1992).

Considering the reported above ground dry matter production at locations within and around the study area, the mean (standard deviation) production for Zea mays, Glycine max and Madicago sativa is found to be, respectively, about 13.90 (2.99), 8.95 (0.73) and 8.78 (0.83) t ha-1 yr-1 (Table D1). Determination of above ground production of Glycine max is somewhat difficult because leaves begin to fall from the plants during the later stages of reproductive growth period, and the biomass of these leaves is often not quantified or included in the reported data (Hanway & Weber 1971 a & b; Beaver & Cooper 1982). Although there are many reports providing grain yield, these data have not been used to calculate above ground production because of variability of the harvest index (Johnson & Major 1979; DeLoughery & Crookston 1979; Schapaugh & Wilcox 1980). Production of root (taken here to be root dry biomass for annual crops), as percent of above ground production, is about 9% for Zea mays (Foth 1962), 13% for Glycine max (Mayaki et al. 1976), and 56% for Madicago sativa (Pearce et al. 1969; Pettersson et al. 1986). Thus, the mean (standard deviation) total dry matter production for Zea mays, Glycine max and Madicago sativa is found to be respectively, as 15.15 (3.26), 10.11 (0.82) and 13.70 (1.29) t ha-1 yr-1.

By taking the carbon content of dry matter to be 44% for Zea mays (Ajtay et al. 1979; Loomis & Lafitte 1987), 48% for Glycine max (Watanabe 1976), and 45% for Madicago sativa (Ajtay et al. 1979; Dubach & Russelle 1994), the mean (standard deviation) C for Zea mays, Glycine max and Madicago sativa is obtained as, respectively, 56 (12), 40 (3), and 51 (5) mol m-2 yr-1. When these C values are weighted by the fractional area of these crops (56%, 36%, and 8%, respectively) one obtains an area average mean (standard deviation) C as 50 (8) mol m-2 yr-1.

There are other uncertainties in the above value of C because of, (a) not considering several other crops like Avena sativa, Secale cereale, Sorghum bicolor, Triticum sp. which are also grown, and land use categories like woodland, land under conservation, and urban areas, and (b) the study area includes parts of several States other than the State of Iowa, where the cropping patterns are different.

According to Ajtay et al. (1979), C for temperate woodlands and urban areas are, respectively, 56 and 19 mol m-2 yr-1.

Changes in the cropping pattern can affect the value of C. For example, Zea mays, Glycine max and hays are also the major crops for the State of Missouri, but the fractional areas occupied by these crops are, respectively, 25%, 41% and 34%. For these fractional areas, the weighted mean C would be 48 mol m-2 yr-1. The major crops for the State of Nebraska are Zea, hays, Glycine, Triticum, and Sorghum, which occupy, respectively, 47%, 18%, 14%, 11%, and 10% of the total area for these crops (over 64,000 km2). If the mean values of C for Triticum and Sorghum are taken to be, respectively, 38 and 47 mol m-2 yr-1 (unpublished preliminary synthesis of production data within and around the area), the area weighted mean C would be 50 mol m-2 yr-1. The major crops for the State of Minnesota are Zea, Glycine, Triticum, and hays, which occupy, respectively, 40%, 31%, 16%, and 13% of the total area for these crops (over 66,000 km2). The area weighted mean C would be 48 mol m-2 yr-1.

(1996) (viz., 1.2 kg m-2). This would suggest that Lo and Nf of the shrub community would be appropriate for associating with the living fine root data given by Jackson et al. However, Shaver & Chapin (1991) have noted that all roots were not extracted in their study. Thus, equally weighted average of Lo and Nf of tussock, shrub and wet sedge communities was considered in determining Lo and foliage nitrogen content. These weighted average values are given in Table 3, together with the calculated φ. For reference, we note that the Lo, Nf and φ for the shrub community are found to be, respectively, 1.4, 0.240 mol N m-2 and 0.211 mol CO2 m-2 d-1, while these for the tussock community are found to be, respectively, 1.1, 0.211 mol m-2 and 0.257 mol m-2 d-1, and for the wet sedge community are found to be, respectively, 0.4, 0.074 mol m-2 and 0.322 mol m-2 d-1.
Table 11. Selected data for above ground dry matter production (DM; t ha⁻¹) of *Zea mays*, *Glycine max* and *Medicago sativa* within and around the study area for crop land. Data given are: location name and coordinate, number of data values (n), mean (standard deviation) and range of DM, and the sources for these data. Summary statistics for DM of each crop based on the mean values at all locations, and those obtained by excluding the highest and the lowest DM values are also given.

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>Mean (SD)</th>
<th>Range</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zea mays:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ames (42.0N, 93.6W)</td>
<td>48</td>
<td>15.19 (3.60)</td>
<td>6.17 - 22.80</td>
<td>1 (Hanway & Russell 1969; Helsel & Wedin 1981; Blackmer & Sanchez 1988); 2 (Jakela & Randall 1989); 3 (Voorhees et al. 1989); 4 (Zemenchick et al. 2000); 5 (Perry & Compton 1977); 6 (Olson 1971); 7 (Hattendorf et al. 1988); 8 (Russelle et al. 1983; Peterson & Varvel 1989); 9 (Blackmer & Sanchez 1988); 10 (DeLoughery & Crookston 1979; Schmid et al. 1976); 11 (Crookston et al. 1978; DeLoughery & Crookston 1979); 12 (DeLoughery & Crookston 1979; Jakela & Randall 1989; Voorhees et al. 1989); 13 (Hanway & Weber 1971b); 14 (Sivakumar et al. 1977); 15 (Johnson & Major 1979); 16 (Power & Koerner 1994); 17 (Clawson et al. 1986); 18 (Ham & Caldwell 1978); 19 (Beaver & Cooper 1982; Beaver et al. 1985; Smith et al. 1988); 20 (Buxton & Wedin 1970); 21 (Sule & Albrecht 1996); 22 (Curran et al. 1993); 23 (Lory et al. 1992; Blumenthal & Russelle 1996); 24 (Zemenchik et al. 1996); 25 (van Riper & Owen 1964; Peterson et al. 1993); 26 (Rominger et al. 1976); 27 (Juan et al. 1993).</td>
</tr>
<tr>
<td>Goodhue (44.4N, 92.6W)</td>
<td>22</td>
<td>13.93 (1.62)</td>
<td>10.00 - 16.90</td>
<td>2</td>
</tr>
<tr>
<td>Lamberton (44.2N, 95.3W)</td>
<td>45</td>
<td>13.63 (3.17)</td>
<td>7.42 - 17.24</td>
<td>3</td>
</tr>
<tr>
<td>Lancaster (42.8N, 90.8W)</td>
<td>9</td>
<td>14.28 (2.22)</td>
<td>9.50 - 16.90</td>
<td>4</td>
</tr>
<tr>
<td>Lincoln (40.8N, 96.7W)</td>
<td>6</td>
<td>21.50 (3.14)</td>
<td>18.43 - 26.52</td>
<td>5</td>
</tr>
<tr>
<td>Madison (44.0N, 97.1W)</td>
<td>12</td>
<td>8.68 (1.22)</td>
<td>7.02 - 10.50</td>
<td>6</td>
</tr>
<tr>
<td>Manhattan (39.1N, 96.6W)</td>
<td>2</td>
<td>21.75 (.-)</td>
<td>18.60 - 24.90</td>
<td>7</td>
</tr>
<tr>
<td>Mud (41.2N, 96.5W)</td>
<td>100</td>
<td>11.82 (3.13)</td>
<td>5.70 - 20.40</td>
<td>8</td>
</tr>
<tr>
<td>Nashua (42.9N, 92.5W)</td>
<td>15</td>
<td>13.34 (3.76)</td>
<td>7.00 - 18.53</td>
<td>9</td>
</tr>
<tr>
<td>Rosemount (44.7N, 93.1W)</td>
<td>36</td>
<td>10.38 (2.03)</td>
<td>6.90 - 15.30</td>
<td>10</td>
</tr>
<tr>
<td>St. Paul (44.9N, 93.1W)</td>
<td>48</td>
<td>12.40 (5.70)</td>
<td>6.60 - 26.10</td>
<td>11</td>
</tr>
<tr>
<td>Waseca (44.1N, 96.3W)</td>
<td>62</td>
<td>12.57 (3.79)</td>
<td>4.40 - 19.50</td>
<td>12</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>14.12 (3.92)</td>
<td>8.68 - 21.75</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>13.90 (2.99)</td>
<td>10.38 - 21.50</td>
<td></td>
</tr>
<tr>
<td>Glycine max:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ames (42.0N, 93.6W)</td>
<td>8</td>
<td>9.42 (0.87)</td>
<td>8.16 - 10.77</td>
<td>13</td>
</tr>
<tr>
<td>Castana (42.4N, 95.9W)</td>
<td>1</td>
<td>9.96 (.-)</td>
<td>8.16 - 10.77</td>
<td>14</td>
</tr>
<tr>
<td>Columbia (38.9N, 92.3W)</td>
<td>4</td>
<td>8.51 (1.03)</td>
<td>6.65 - 10.07</td>
<td>15</td>
</tr>
<tr>
<td>Lincoln (40.8N, 96.7W)</td>
<td>4</td>
<td>7.69 (2.81)</td>
<td>5.15 - 11.38</td>
<td>16</td>
</tr>
<tr>
<td>Manhattan (39.1N, 96.6W)</td>
<td>2</td>
<td>9.10 (.-)</td>
<td>7.60 - 10.60</td>
<td>7</td>
</tr>
<tr>
<td>Pea (41.2N, 96.5W)</td>
<td>8</td>
<td>7.12 (0.40)</td>
<td>6.72 - 7.91</td>
<td>17</td>
</tr>
<tr>
<td>Rosemount (44.7N, 93.1W)</td>
<td>9</td>
<td>9.33 (0.57)</td>
<td>8.56 - 9.98</td>
<td>18</td>
</tr>
<tr>
<td>Urbana (40.1N, 88.2W)</td>
<td>10</td>
<td>9.67 (1.21)</td>
<td>8.30 - 11.80</td>
<td>19</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>8.85 (1.00)</td>
<td>7.12 - 9.96</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>8.95 (0.73)</td>
<td>7.69 - 9.67</td>
<td></td>
</tr>
<tr>
<td>Medicago sativa:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ames (42.0N, 93.6W)</td>
<td>6</td>
<td>8.95 (0.73)</td>
<td>8.20 - 9.84</td>
<td>20</td>
</tr>
<tr>
<td>Arlington (43.3N, 89.4W)</td>
<td>11</td>
<td>8.05 (0.52)</td>
<td>7.45 - 8.99</td>
<td>21</td>
</tr>
<tr>
<td>Aurora (44.3N, 96.7W)</td>
<td>4</td>
<td>10.18 (0.66)</td>
<td>9.30 - 10.90</td>
<td>22</td>
</tr>
<tr>
<td>Becker (45.4N, 93.9W)</td>
<td>6</td>
<td>8.50 (3.01)</td>
<td>4.30 - 11.30</td>
<td>23</td>
</tr>
<tr>
<td>Lancaster (42.8N, 90.8W)</td>
<td>6</td>
<td>7.03 (1.43)</td>
<td>5.00 - 8.40</td>
<td>24</td>
</tr>
<tr>
<td>Lincoln (40.8N, 96.7W)</td>
<td>4</td>
<td>8.97 (0.88)</td>
<td>8.03 - 10.02</td>
<td>25</td>
</tr>
<tr>
<td>Madison (43.1N, 89.4W)</td>
<td>18</td>
<td>10.33 (2.34)</td>
<td>5.25 - 13.08</td>
<td>26</td>
</tr>
<tr>
<td>Marshall (44.7N, 90.0W)</td>
<td>11</td>
<td>7.62 (0.39)</td>
<td>6.94 - 8.05</td>
<td>27</td>
</tr>
<tr>
<td>Rosemount (44.7N, 93.1W)</td>
<td>12</td>
<td>9.20 (0.80)</td>
<td>8.00 - 10.10</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>8.76 (1.10)</td>
<td>7.03 - 10.33</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>8.78 (0.83)</td>
<td>7.62 - 10.18</td>
<td></td>
</tr>
</tbody>
</table>
The above results suggest that the C for the crop land area is about 49 mol m\(^{-2}\) yr\(^{-1}\), with an uncertainty of about 15%.

Appendix E

This appendix elaborates on the estimate of net production of tropical deciduous forests (Table 11).

Cannell (1982) has given above ground dry matter production for a stand near Varanasi (25.3\(^{\circ}\)N, 83.0\(^{\circ}\)E) as 14.87 t ha\(^{-1}\) yr\(^{-1}\), and litterfall dry matter as 6.78 t ha\(^{-1}\) yr\(^{-1}\).

By synthesizing the available data, Nadelhoffer & Raich (1992) have suggested that annual fine root production (FRP; g (carbon) m\(^{-2}\) yr\(^{-1}\)) can be estimated from litterfall (LFC; g (carbon) m\(^{-2}\) yr\(^{-1}\)) using the following empirical equation:

\[
FRP = \frac{130 + 1.92 \times LFC}{3} \quad (D1)
\]

Additionally, for synthesizing the available data, they converted all organic matter fluxes to carbon units by taking 48% as conversion factor.

Thus, for LFC of 325.4 (=6.78 x 100 x 0.48) g (carbon) m\(^{-2}\) yr\(^{-1}\), Eq. (D1) gives FRP = 251.6 g (carbon) m\(^{-2}\) yr\(^{-1}\) or 21 mol m\(^{-2}\) yr\(^{-1}\). Adding this root production to the above ground production gives net carbon accumulation as 80 mol m\(^{-2}\) yr\(^{-1}\).

For another forest near Varanasi (24.9\(^{\circ}\)N, 83.2\(^{\circ}\)E), Cannell (1982) has given above and below ground net dry matter production as, respectively, 9.50 and 3.54 t ha\(^{-1}\) yr\(^{-1}\), which gives the total net production as 13.04 t ha\(^{-1}\) yr\(^{-1}\). This net production corresponds to C of 52 mol m\(^{-2}\) yr\(^{-1}\), when carbon content of dry matter is taken to be 48%.

Brown & Lugo (1982) have given net dry matter production for a stand of sub-tropical dry forest near Ensenada (18.0\(^{\circ}\)N, 65.9\(^{\circ}\)W) as 11.0 t ha\(^{-1}\) yr\(^{-1}\). This corresponds to C of 44 mol m\(^{-2}\) yr\(^{-1}\), when carbon content of dry matter is taken to be 48%.

Measurements in the Marihan range of East Mirzapur Forest Division (24.9\(^{\circ}\)-25.2\(^{\circ}\)N, 82.5\(^{\circ}\)-82.8\(^{\circ}\)E) by Singh & Singh (1991) gave net carbon accumulation as 6.7 (+/- 1.0) t ha\(^{-1}\) yr\(^{-1}\) or 56 (+/- 8) mol m\(^{-2}\) yr\(^{-1}\).