Effect of anthropogenic disturbance on vegetation characteristics of sub-alpine forests in and around Valley of Flowers National Park, a world heritage site of India

SANJAY GAIROLA1*, RANBEER S. RAWAL2 & N. P. TODARIA3

1School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bagx 54001, Durban 4000, South Africa
2G. B. Pant Institute of Himalayan Environment & Development, Kosi-Katarmal, Almora 263643, Uttarakhand, India
3Department of Forestry and Natural Resources, H.N.B. Garhwal University, Srinagar (Garhwal) 246174 Uttarakhand, India

Abstract: Certain vegetation attributes of three sub-alpine forests, viz., Betula utilis (Birch), Abies pindrow (Fir) and Acer (Maple) mixed forest were studied along a disturbance gradient in and around the Valley of Flowers National Park in Garhwal, western Himalaya, India. The study sites in each forest were classified into non-degraded, semi-degraded and degraded plots based on the intensity of current and past anthropogenic disturbance impacts. In Betula utilis forest, density and basal area of trees, and density of herbs and shrubs decreased with increasing disturbance. In Acer mixed forest, the decrease was for density and basal area of trees, and density of herbs. However, in Abies pindrow forest, density of trees was highest in the degraded plots and total basal area peaked in the semi-degraded plots. Natural regeneration, expressed in terms of seedling and sapling density in different forest types, revealed the following pattern: (i) in Betula utilis forest, the highest density of seedlings and saplings was in semi-degraded plots; (ii) in Abies pindrow and Acer mixed forests, the density of seedlings and saplings was highest in the degraded plots. The present study indicates that the compositional attributes of sub-alpine forest communities in western Himalaya are sensitive to anthropogenic disturbances, and the effects varied amongst the forest types and life forms. While compositional attributes of the broadleaved Betula utilis forest exhibited a greater sensitivity to disturbance than the other two forests, the coniferous Abies pindrow forest was the most resilient.

Resumen: Algunos atributos de la vegetación de tres bosques subalpinos, a saber, bosques de Betula utilis (abedul), de Abies pindrow (abeto) y bosque mixto de Acer (arce), fueron estudiados a lo largo de un gradiente de disturbio en y alrededor del Parque Nacional Valley of Flowers en Garhwal, Himalaya Occidentales, India. Los sitios de estudio en cada bosque fueron clasificados como parcelas no degradadas, semidegradadas y degradadas con base en la intensidad de los impactos de disturbios antropogénicos actuales y pasados. En el bosque de Betula utilis, la densidad y el área basal de los árboles, y la densidad de las hierbas y arbustos disminuyó con el aumento de la perturbación. En el bosque mixto de Acer se observó una disminución de la densidad y el área basal de los árboles, y della densidad de las hierbas. Sin embargo, en el bosque de Abies pindrowa densidad de árboles fue mayor en las parcelas degradadas y el área basal total alcanzó su máximo en las parcelas semidegradadas. La regeneración natural, expresada en términos de las densidades de plántulas y plantones en diferentes tipos de bosques, reveló el siguiente patrón: (i) en el bosque de Betula utilis, la mayor

*Corresponding Author; e-mail: drsanjaygairola@gmail.com
densidad de plántulas y plantones fue registrada en parcelas semidegradadas; (ii) en el bosque de *A. pindrow* y los bosques mixtos de *Acer*, las densidades de plántulas y plantones fueron más altas en las parcelas degradadas. El presente estudio indica que los atributos de composición de las comunidades forestales subalpinas en el oeste de los Himalaya son sensibles a los disturbios antropogénicos y que los efectos variaron entre tipos de bosque y formas de vida. Si bien los atributos de composición del bosque latifoliado de *B. utilis* mostraron una mayor sensibilidad a los disturbios que los otros dos bosques, el bosque de coníferas de *A. pindrow* fue el más resiliente.

Resumo: Alguns atributos da vegetação de três florestas subalpinas, a saber: floresta mista de *Betula utilis* (videiro), *Abies pindrow* (abeto) e *Acer* (sicómoro) foram estudados ao longo de um gradiente de perturbação em e em torno do Vale do Parque Nacional das Flores em Garhwal, Himalaiaocidental, Índia. Os locais de estudo em cada floresta foram classificados em parcelas não degradadas, semi-degradadas e degradadas com base na intensidade dos impactes de perturbação antrópicas e passados. Na floresta de *B. utilis*, a densidade, a área basal das árvores e a densidade das ervas e arbustos diminuíram com o aumento de perturbação. No entanto, na floresta de *A. pindrow*, a densidade das árvores foi maior nas parcelas degradadas e a área basal total apresentou um pico nas parcelas semi-degradadas. A regeneração natural, expressa em termos de plântulas e da densidade de plantio, revelou o seguinte padrão: (i) na floresta de *B. utilis*, a maior densidade de plantio foi em parcelas semi-degradadas; (ii) nas florestas de *A. pindrow* e florestas mistas de *Acer*, a densidade de plantio e de plantas jovens foi maior nas parcelas degradadas. Este estudo indica que os atributos de composição das comunidades florestais subalpinas nos Himalaias occidentais são sensíveis a perturbações antrópicas e os efeitos variaram entre os tipos de florestas e formas de vida. Enquanto os atributos composticionais da floresta folhosa de *B. utilis* exibiu uma sensibilidade maior à perturbação do que as outras duas florestas, sendo a floresta de coníferas de *A. pindrowa* mais resistente.

Key words: Anthropogenic disturbance, natural regeneration, species diversity, sub-alpine forests.

Introduction

Across the world, human activities have resulted in significant changes in ecosystems. Degradation of vegetation is one of the most critical consequences of such activities (Baithalu *et al.* 2013; Devi *et al.* 2014; Dias & Melo 2010; Gunaga *et al.* 2013). Diverse disturbance factors including harvesting of fuel wood and timber have been reported to greatly influence the diversity of forest communities (Sayer & Whitmore 1991) leading to change in species composition and vegetation structure (Berkmuller *et al.* 1990; Kouki 1994). Uncontrolled grazing by domestic livestock also directly impacts the regeneration processes of forests (Kelt & Valone 1995; Saberwal 1995). In addition to anthropogenic disturbances, natural calamities, and insect and pest damages also affect the biota and ecological processes in forest ecosystems (Attiwill 1994; Frelich 2002).

Anthropogenic disturbances in the upper montane zones of many mountains of the world have been reported to alter the regeneration dynamics of both forest and alpine vegetation communities (Perez 1992; Young 1994). The disturbances have also become widespread in the upper montane zones across the Indian Himalayan region, thereby impacting both composition and functioning of high elevation natural ecosystems (Gairola *et al.* 2009; Rawal *et al.* 2012; Singh & Singh 1992). Birch (*Betula utilis*) and fir (*Abies pindrow*) forests dominate the sub-alpine areas of the western Himalaya (2800 - 3600 m a.s.l.) (Rawal & Pangtey 1994). As such, the sub-alpine forests represent a transition (ecotone) between alpine grasslands and temperate forest ecosystems. Besides functioning as a potential indicator for trends of climatic change, this ecotone is valued as a
unique habitat for representative, specialized and sensitive biodiversity elements including distinct biological assemblages, native and endemic floral and faunal species, and economically important species (Dhar 2000; Rawal & Dhar 1997). However, these forests are under anthropogenic pressure resulting in rapid degradation (Dhar 2000; Rai et al. 2012; WII 1992). Temporal analysis of imageries revealed an upward shift of timberline vegetation in Nanda Devi Biosphere Reserve (Panigrahy et al. 2010) in western Himalaya. Singh (1998) opined that chronic anthropogenic disturbances in the Himalayan forests often lead to their inadequate recovery. Understanding the relationship between disturbance and vegetation structure is important as it helps in predicting the status of species diversity, competition, succession and population dynamics in plant communities (Connell 1978; Clark 1991). Although a few recent studies have highlighted the relationship between disturbance and vegetation structure in selected forest communities in the Himalayan region (Gairola et al. 2009; Kumar & Ram 2005; Rawal et al. 2012), the need of more such studies has been emphasized by many workers, particularly to find out the impacts of anthropogenic disturbances on timberline vegetation of western Himalaya (Rai et al. 2012). Recognizing the overall biodiversity value and change (climatic and anthropogenic) - sensitivity of sub-alpine forests, the present study was carried out to investigate the changes in structural attributes of vegetation along an anthropogenic disturbance gradient in three subalpine forests of western Himalaya.

Materials and methods

Study area

The study was conducted in and around the forested areas of the Valley of Flowers National Park (VOFNP) in Uttarakhand state of India (Fig. 1). The VOFNP (location: 30° 41’ - 30° 48’ N and 79° 33’ - 79° 46’ E), famous for its floral diversity and alpine and sub-alpine ecosystems, has been inscribed on the list of world heritage sites by UNESCO (http://whc.unesco.org/en/list/335). The climate of the area is characterized by short cool summer and long severe winter. Mean temperature and rainfall during the peak growing season (July) are 13 °C and 415 mm, respectively (Kala et al. 1998). Low temperature and high snow accumulation often shorten the growing season.

Three selected study sites viz., VOFNP (within the park representing non-degraded forest stands), Ghangaria (outside the VOFNP representing semi-degraded forest stands), and Bhyundar (outside the VOFNP representing degraded forest stands) (Table 1) with an elevation range of 2750 to 3250 m asl, had all the three forest types viz., broadleaved Birch - Betula utilis, coniferous Fir-Abies pindrow, and mixed broadleaved Maple-Acer mixed (Bharti et al. 2011; Gairola et al. 2009; Kala & Uniyal 1999). Area of each forest stand under each disturbance category and forest type ranged between 1.5 and 4 ha (Table 1).

Disturbance gradient

The study site selected within the VOFNP was free from any anthropogenic disturbances. The remaining two sites were subjected to grazing (including migratory grazing), felling/lopping of trees for fuel wood, timber, and fodder, and tourist activities. Lopping intensity was calculated as the
Table 1. Description of study sites and sampling locations in and around Valley of Flowers National Park.

<table>
<thead>
<tr>
<th>Location (Elevation range m asl)</th>
<th>Approximate area (ha) under each surveyed forest</th>
<th>Management and disturbance attributes</th>
<th>Disturbance intensity (cumulative attributes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley of Flowers National Park-VOFN (3,150-3,250)</td>
<td>B. utilis - 3 ha</td>
<td>No human disturbance, protected since 1982; inside Valley of Flowers National Park</td>
<td>Non-degraded (No tree felling, No grazing, approximately 3 decades of protection)</td>
</tr>
<tr>
<td>Ghangaria (2,950 - 3,150) (outside VOFNP)</td>
<td>B. utilis - 2 ha; A. pindrow - 1.5 ha; Acer mixed - 1.5 ha</td>
<td>Away from habitation (> 500 m); distance from cattle camp (> 500 m); tree felling (10 %) and moderate livestock grazing; influx of tourists and pilgrims (May - October)</td>
<td>Semi-degraded (Tree felling/loping intensity < 10 %, Moderate grazing, distant from habitations and cattle camp, seasonal (May - October) human interventions approximately > 50 years of disturbance history)</td>
</tr>
<tr>
<td>Bhyundar (2,750 - 2,950) (outside VOFNP)</td>
<td>B. utilis - 1.5 ha</td>
<td>Near habitation (< 500 m); near to cattle camp (< 500 m); tree felling (> 20 %) and high livestock grazing</td>
<td>Degraded (Tree felling/loping intensity > 20 %, high grazing, nearer to habitation and cattle camp, round the year human intervention, approximately > 80 years of disturbance history)</td>
</tr>
</tbody>
</table>

Table 2. Vegetation characteristics of sub-alpine forests across disturbance gradients.

<table>
<thead>
<tr>
<th>Forest types</th>
<th>Disturbance intensity</th>
<th>Tree density (Ind ha(^{-1}))</th>
<th>Total basal area (m(^2) ha(^{-1}))</th>
<th>Seedling density (Ind ha(^{-1}))</th>
<th>Sapling density (Ind ha(^{-1}))</th>
<th>Herb density (Ind ha(^{-1}))</th>
<th>Shrub density (Ind ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. utilis</td>
<td>Non-degraded</td>
<td>1208</td>
<td>33.45</td>
<td>2700</td>
<td>500</td>
<td>192667</td>
<td>4806</td>
</tr>
<tr>
<td></td>
<td>Semi-degraded</td>
<td>745</td>
<td>35.98</td>
<td>6600</td>
<td>5833</td>
<td>158133</td>
<td>3627</td>
</tr>
<tr>
<td></td>
<td>Degraded</td>
<td>820</td>
<td>17.87</td>
<td>1000</td>
<td>1966</td>
<td>82700</td>
<td>1360</td>
</tr>
<tr>
<td>LSD (< 0.05)</td>
<td></td>
<td>215</td>
<td>2.30</td>
<td>985</td>
<td>2408</td>
<td>42800</td>
<td>2091</td>
</tr>
<tr>
<td>F ratio</td>
<td></td>
<td>12.02***</td>
<td>164.66***</td>
<td>77.28***</td>
<td>11.90***</td>
<td>4.20**</td>
<td>6.37**</td>
</tr>
<tr>
<td>A. pindrow</td>
<td>Non-degraded</td>
<td>721</td>
<td>62.18</td>
<td>4567</td>
<td>1467</td>
<td>128400</td>
<td>2179</td>
</tr>
<tr>
<td></td>
<td>Semi-degraded</td>
<td>534</td>
<td>86.75</td>
<td>7398</td>
<td>900</td>
<td>194800</td>
<td>2179</td>
</tr>
<tr>
<td></td>
<td>Degraded</td>
<td>728</td>
<td>53.18</td>
<td>11067</td>
<td>5732</td>
<td>73467</td>
<td>627</td>
</tr>
<tr>
<td>LSD (< 0.05)</td>
<td></td>
<td>500</td>
<td>42.94</td>
<td>2078</td>
<td>1281</td>
<td>130500</td>
<td>1945</td>
</tr>
<tr>
<td>F ratio</td>
<td></td>
<td>0.71</td>
<td>1.49</td>
<td>22.36***</td>
<td>38.66***</td>
<td>1.9</td>
<td>1.93</td>
</tr>
<tr>
<td>Acer mixed</td>
<td>Non-degraded</td>
<td>1047</td>
<td>34.28</td>
<td>4134</td>
<td>1933</td>
<td>162267</td>
<td>1191</td>
</tr>
<tr>
<td></td>
<td>Semi-degraded</td>
<td>920</td>
<td>20.35</td>
<td>5566</td>
<td>3400</td>
<td>163733</td>
<td>1973</td>
</tr>
<tr>
<td></td>
<td>Degraded</td>
<td>706</td>
<td>30.53</td>
<td>5669</td>
<td>3800</td>
<td>84000</td>
<td>699</td>
</tr>
<tr>
<td>LSD (< 0.05)</td>
<td></td>
<td>235</td>
<td>12.96</td>
<td>3610</td>
<td>2386</td>
<td>47800</td>
<td>415</td>
</tr>
<tr>
<td>F ratio</td>
<td></td>
<td>4.85**</td>
<td>2.79*</td>
<td>0.568</td>
<td>1.54</td>
<td>10.8***</td>
<td>21.74***</td>
</tr>
</tbody>
</table>

Significance levels: *** for \(P < 0.001\); ** for \(P < 0.01\); * for \(P < 0.05\) respectively.

For vegetation sampling, three plots of size 50 x 50 m were demarcated in each forest type at the three study sites representing three disturbance levels. Thus a total of 9 plots were established. The plots were located at least 50 m apart. In each plot, five 10 x 10 m quadrats were laid randomly for enumerating tree and shrub species (45 quadrats...
Results

Density and basal area of tree component

Tree density significantly varied across the disturbance levels in broadleaved B. utilis forest with highest in non-degraded plots \((F_{2, 44} = 12.02, P < 0.001) \) (Table 2). A similar pattern was observed in the other broadleaved forest (Acer mixed). On the contrary, in the coniferous forest \((A. \ pindrow) \), tree density did not vary significantly \((F_{2, 44} = 0.71, P > 0.05) \) across disturbance levels. The density was, however, maximum in degraded plots \((728 \text{ individuals ha}^{-1}) \).

Total basal area (TBA) of trees varied significantly across the disturbance levels in the broadleaved forests (Table 2). In B. utilis forest, mean TBA was higher in the semi-degraded plots than the non-degraded plots but declined sharply with further increase in the level of disturbance \((F_{2, 44} = 164.66, P < 0.001) \). Whereas, Acer mixed broadleaved forest exhibited a decline in mean TBA from non-degraded to semi-degraded plots \((F_{2, 44} = 2.79, P < 0.05) \). In the coniferous A. pindrow forest, the variation in TBA across disturbance levels was not significant.

The effect of disturbance on natural regeneration, i.e., seedling and sapling density, in different forest types revealed the following: (i) the mean density of seedling \((F_{2, 179} = 77.28, P < 0.001) \) and sapling \((F_{2, 179} = 11.90, P < 0.001) \) was significantly higher in semi-degraded plots than the degraded plots in B. utilis forest; (ii) degraded plots exhibited significantly higher mean density of seedling \((F_{2, 179} = 22.36, P < 0.001) \) and sapling \((F_{2, 179} = 38.66, P < 0.001) \) than the semi-degraded plots in A. pindrow forest; and (iii) in Acer mixed forest, the density of seedlings and saplings did not show any significant trend in relation to disturbance.

Density of shrub and herb components

ANOVA results showed significant differences in the herb density across disturbance levels in broadleaved B. utilis and Acer mixed forests \((F_{2, 44} = 6.37, P < 0.01; F_{2, 44} = 21.74, P < 0.001) \). The mean density of shrubs decreased significantly from non-degraded \((4806 \text{ individuals ha}^{-1}) \) to degraded plots \((1360 \text{ individuals ha}^{-1}) \) in B. utilis forest. In Acer mixed forest, the shrub density was highest in semi-degraded plots. In A. pindrow forest, however, shrub density did not show any significant trend in relation to disturbance.

The herb density significantly varied across disturbance levels in B. utilis forest \((F_{2, 179} = 4.20, P < 0.01) \). The non-degraded plots of broadleaved B. utilis forest exhibited significantly higher density \((1,92,667 \text{ individual ha}^{-1}; P < 0.05) \) than the degraded plots \((82,700 \text{ individuals ha}^{-1}) \). In A. pindrow forest, the semi-degraded plots had the highest density of herbs. In the broadleaved Acer mixed forest, both the non-degraded and semi-degraded plots had significantly greater mean herb density than the degraded plots \((F_{2, 179} = 10.8, P < 0.001) \).

Diversity patterns

The non-degraded plots of B. utilis forest supported higher herb species diversity than the semi-degraded and degraded plots. In Acer mixed
forest, highest species richness for herbs was recorded from semi-degraded plots followed by non-degraded and degraded plots. In the non-degraded plots of A. pindrow forest, the herbs had highest species richness. Tree species richness and diversity were highest in the degraded plots in all the three forest types (Fig. 2 & Table 3).

Discussion

Evidences from different parts of the Indian Himalaya have shown that anthropogenic disturbances greatly influence the diversity and structural characteristics of forest communities in the region (Mishra et al. 2004; Rawal et al. 2012). Studies from Nepal Himalaya have revealed substantial changes in species composition and community structure of sub-alpine forest on account of human disturbances (Ghimire & Lekhak 2007). Rasingam & Parathasarathy (2009) while comparing patterns of tree species diversity and population structure across disturbance categories in Little Andaman Island reported clear differences in stand structure and species diversity among the undisturbed and disturbed sites. While considering level and frequency of disturbances vis-a-vis forest types, it is often argued that level and frequency of disturbance, and the consequent impacts on forest characteristics either remain site-specific (Htun et al. 2011) or forest type specific (Gairola et al. 2009; Rawal et al. 2012). The varied responses towards disturbance levels amongst the studied forest types in the sub-alpine zone of western Himalaya, therefore, follows the latter argument of forest specific effects of disturbances.

Table 3. Pattern of diversity index (H') value across disturbance gradients.

<table>
<thead>
<tr>
<th>Forest types</th>
<th>Life form</th>
<th>Non-degraded</th>
<th>Semi-degraded</th>
<th>Degraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. utilis</td>
<td>Tree</td>
<td>0.35</td>
<td>0.59</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>2.10</td>
<td>1.93</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>Herbs</td>
<td>3.46</td>
<td>3.17</td>
<td>3.07</td>
</tr>
<tr>
<td>A. pindrow</td>
<td>Trees</td>
<td>0.80</td>
<td>0.99</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>2.29</td>
<td>1.92</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Herbs</td>
<td>2.85</td>
<td>2.97</td>
<td>3.04</td>
</tr>
<tr>
<td>Acer mixed</td>
<td>Tree</td>
<td>1.36</td>
<td>1.22</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>Shrub</td>
<td>1.84</td>
<td>2.4</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>Herbs</td>
<td>2.47</td>
<td>2.73</td>
<td>2.56</td>
</tr>
</tbody>
</table>

The broadleaved forests viz., B. utilis and Acer mixed exhibited greater sensitivity in terms of tree density and basal area towards anthropogenic disturbances than the coniferous forest. Other studies from different parts of Indian Himalaya revealed that less disturbed stands of both broad leaved and coniferous forests had higher tree density and TBA than more disturbed forests (Anitha et al. 2009; Mishra et al. 2004; Nath et al. 2005; Uniyal et al. 2010). Recently, while investigating the responses of Oak (Quercus spp.) forests to disturbance, Rawal et al. (2012) also reported significant decline in tree density and total basal area in degraded sites of Q. leucotrichophora and Q. semecarpifolia forests. In Acer mixed forest tree density exhibited greater sensitivity to increasing level of disturbance than basal area which remained low at moderate level of disturbance (semi-degraded) indicating that reduced tree density in
degraded plots might have provided optimal conditions for accumulating biomass. No significant changes in the tree density and TBA in the coniferous forest (A. pindrow) across disturbance levels indicate that tree stocking and biomass in this forest remained resilient to anthropogenic disturbances.

Irrespective of responses of the tree layer towards disturbance level in the studied forests, the density of shrub and herb layers invariably decreased with increasing level of disturbance. This calls for an immediate attention, especially when most of the plans and management prescriptions for the forests in the region are strongly oriented towards the dominant tree species (Rawal et al. 2003). Significant negative influence of human disturbance on understorey species, and sensitivity of herbs and shrub layers to increasing intensity of disturbance have been emphasized by Wassie et al. (2010) and Rawal et al. (2012).

Results of the present study indicate that the level of disturbance does not have uniform effect on natural regeneration expressed in terms of seedling and sapling density. For instance, recruitment in broadleaved B. utilis and coniferous A. pindrow forests remained sensitive to disturbance level. The recruitment in the broadleaved Acer mixed forest, however, remained unaffected by changing level of disturbance. Frequent but low intensity disturbance due to grazing and fuelwood collection seemed to affect forest structure and the tree species could regenerate in such degraded sites. In B. utilis forest, the semi-degraded condition seems to favour the natural recruitment. The increase in density of recruits in moderately disturbed forests in the region has also been reported for Q. floribunda and Q. semecarpifolia forests (Rawal et al. 2012). This is in consonance with the reported positive role of mild disturbance in increasing tree regeneration (Barik et al. 1996; Khan et al. 1998; Maram Kuba & Khan 1998).

This, however, did not hold good for coniferous A. pindrow forest which seems to have best recruitment in degraded plots. The ecological attributes of tree species including seed traits, their capacity to reproduce at an early stage and their ability to maintain high growth rates in open habitats might have contributed to high recruitments in the degraded plots. In Temperate mixed conifer forest in the Bhutan Himalaya, Darabant et al. (2007) reported that the growth of tree seedlings was considerably higher in grazed plots than the ungrazed plots due to increased light interception. Increase in species richness in degra-

Conclusions

This study provides strong evidences on sensitivity of sub-alpine forests to anthropogenic disturbances. The sensitivity to disturbance varied among the three forests and diverse life forms i.e., trees, shrubs, herbs. Among the three forests studied, the broadleaved B. utilis forest appears to be most disturbance-sensitive forest community in the sub-alpine zone of the western Himalaya. This sensitivity needs to be further understood against the perceived notion that these forests are less affected by disturbance due to their special habitats i.e., occurrence along the deep gorges (Rai et al. 2012). These forests should, therefore, be given special attention while defining conservation and management priorities for the sub-alpine zones of western Himalaya. The Acer mixed broad-leaved forest with moderate changes in tree layer and no significant change in recruitment emerged as relatively resilient to disturbance. The composition of coniferous forest of A. pindrow broadly remains unaffected to disturbance level. However, the degraded sites of this forest supported high natural recruitment of species other than A. pindrow, thereby suggesting future compositional changes in such sites. Results of present study suggest that the three forest types in the region would require different management interventions while addressing the issues of disturbance related effects. The herb and shrub layers, being greatly susceptible to increasing disturbance levels, should deserve special attention of researchers and managers.

Acknowledgments

We are grateful to the Director, G. B. Pant Institute of Himalayan Environment and Development, for necessary facilities and the Chief Wildlife Warden, Uttarakhand, for permission to work in and around VOFNP. The financial support (research grant 10/28/98-CS/BR) received from the Ministry of Environment and Forests, Government
of India, New Delhi, is gratefully acknowledged. We thank anonymous reviewers for constructive comments and suggestions on earlier draft of the manuscript which greatly helped us in improving the contents.

References

(Received on 17.05.2011 and accepted after revisions, on 05.02.2014)